ΜΕΤΑΔΟΣΗ ΨΗΦΙΑΚΟΥ ΒΙΝΤΕΟ ΣΤΟ ΔΙΑΔΙΚΤΥΟ
ΜΑΚΡΗ ΣΤΑΜΑΤΙΚΗ

ΙΟΥΝΙΟΣ 2008

ΕΚΠΟΝΗΘΗΣ ΚΑΘΗΓΗΤΗΣ
ΠΑΠΑΔΗΜΗΤΡΙΟΥ ΠΑΝΑΓΙΩΤΗΣ

Εκπονηθείσα ττηχισκή εργασία απαραίτητη για την κτήση του βασικού ττυχίου

Σελίδα 1 από 91
Πρόλογος

Θα ήθελα να ευχαριστήσω θερμά τον επιβλέποντα καθηγητή μου κ. Παπαδημητρίου Παναγιώτη για την πολύτιμη βοήθεια που μου παρέχει στην διεξαγωγή της πτυχιακής μου εργασίας!

Η παρακάτω πτυχιακή εργασία είναι αφιερωμένη στον Άγγελο..
ΠΡΟΛΟΓΟΣ

Η αυξανόμενη ζήτηση πολυμεσικών εφαρμογών, η αύξηση της χρήσης του Διαδίκτυου και η χρήση των ασύρματων δικτύων δημιούργησαν το ενδιαφέρον για την ροή πολυμέσων. Ακόμη το Διαδίκτυο έχει αλλάξει τον τρόπο απόκτησης και διατήρησης πελατών. Για την διατήρηση του ανταγωνιστικού πλεονεκτήματος είναι απαραίτητη η παροχή υψηλού επιπέδου υπηρεσιών όπως για παράδειγμα τα ολοκληρωμένα συστήματα επικοινωνιών.

Ενθαρρύνοντας ήχο, βίντεο και δεδομένα στο Διαδίκτυο, είναι απαραίτητοι οι χρήστες να μπορούν να αξιοποιήσουν τις λύσεις που προτείνονται για την αποτελεσματική διανομή των πολυμέσων.

Στην εργασία αυτή σκοπός είναι να αναλύσουμε τον τρόπο μετάδοσης του ψηφιακού βίντεο στο Διαδίκτυο. Να αξιολογήσουμε τις θεμελιώδεις απαιτήσεις και περιορισμούς της Ποιότητας Υπηρεσιών, να επιθεωρήσουμε τις τεχνολογίες ροής πολυμέσων. Ακόμη προκειμένου να αποκτήσουμε μια πλήρη αντίληψη της ροής πολυμέσων και της Ποιότητας Υπηρεσιών πρέπει να διερευνούμε τις απαιτήσεις των εφαρμογών σε σχέση με την Ποιότητα Υπηρεσιών όπως δημιουργείται από το Διαδίκτυο.

Τέλος παρουσιάζουμε πως συμπεριφέρονται τα διάφορα πρωτόκολλα πραγματικού χρόνου στις απαιτήσεις των πολυμεσικών εφαρμογών, τι υπηρεσίες παρέχουν και ποια προβλήματα αντιμετωπίζει το κάθε ένα από αυτά σε σχέση με τις απαιτήσεις που αναφέραμε προηγούμενως.

Το βίντεο είναι μια από τις πιο συνηθισμένες και πλέον απαραίτητες εφαρμογές στο Διαδίκτυο, οπότε είναι αρκετά σημαντικό να κατανοήσουμε όσο το δυνατόν πιο σωστά τον τρόπο με τον οποίο μεταδίδεται και τα προβλήματα τα οποία παρουσιάζονται κατά τη διάρκεια της μετάδοσης του μέσω του Διαδίκτυου.
ΠΡΟΛΟΓΟΣ

ΠΕΡΙΕΧΟΜΕΝΑ :

Πρόλογος ..2
Εισαγωγή ...6

ΚΕΦΑΛΑΙΟ ΠΡΩΤΟ
ΠΟΛΥΜΕΣΙΚΕΣ ΕΦΑΡΜΟΓΕΣ ΚΑΙ ΕΚΤΙΜΗΣΗ ΑΠΟΔΟΣΗΣ11
1.1 Διαχείριση Υπηρεσιών Ποιότητας στη Ροή Πολυμέσων11
1.2 Δεν χρειάζονται όλες οι εφαρμογές τις ίδιες υπηρεσίες:
 Απαιτήσεις και Ταξινόμηση ..12
 1.2.1 Ελαστικές και Μη Ελαστικές..12
 1.2.2 Ανεκτικές και Μη Ανεκτικές...13
1.3 Απόδοση Πολυμεσικών Εφαρμογών...14
1.4 Παράμετροι Ποιότητας Υπηρεσιών Δικτύου..17
1.5 Κριτήρια Εκτίμησης της Απόδοσης των Πολυμεσικών
 Εφαρμογών ...20

ΚΕΦΑΛΑΙΟ ΔΕΥΤΕΡΟ
ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΚΑΙ ΠΡΟΤΥΠΑ ΠΟΛΥΜΕΣΙΚΩΝ ΡΟΩΝ23

2.1 Ποιότητα Υπηρεσιών Κίνησης Πολυμέσων ..23
2.2 Πολυμεσική Ροής ...24
2.3 Η τεχνολογία Ροής ..26
 2.3.1 Μέθοδοι και είδη Ροής...27
 2.3.2 Τρόποι μετάδοσης Βίντεο ..30
2.4 Ψηφιακό βίντεο ..33
2.5 Τεχνικές και αλγόριθμοι συμπίεσης και αποσυμπίεσης34
 2.5.1 Το πρότυπο συμπίεσης Η.263..34
2.6 Οικογένεια MPEG ...35
2.6.1 Το πρότυπο συμπίεσης MPEG .. 36
2.7 Χρήση του ψηφιακού βίντεο στη καθημερινή μας ζωή 40
 2.7.1 Τηλεδιάσκεψη ... 40
 2.7.2 Video-Τηλεφωνία .. 41
 2.7.3 Τηλεδιάσκεψη γραφείου .. 42
 2.7.4 Τηλεδιάσκεψη πολυμεσικών εγκαταστάσεων 43
 2.7.5 Τηλεδιάσκεψη πολλαπλών σημείων 44

ΚΕΦΑΛΑΙΟ ΤΡΙΤΟ
ΠΡΟΒΛΗΜΑΤΑ ΠΟΛΥΜΕΣΙΚΩΝ ΕΦΑΡΜΟΓΩΝ 46

3.1 Καθυστέρηση απ’άκρου εις άκρο .. 46
 3.1.1 Απόκλιση καθυστέρησης ... 47
 3.1.2 Επίδραση της Καθυστέρησης .. 47
3.2 Απώλεια πακέτων ... 48
 3.2.1 Επίδραση της Απώλειας πακέτων 50
3.3 Τι είναι Απόκλιση Καθυστέρησης .. 50
 3.3.1 Επίδραση της Απόκλισης Καθυστέρησης 51
 3.3.2 Πρόληψη και διόρθωση της Απόκλισης Καθυστέρησης 52
3.4 Συμφόρηση ... 53
 3.4.1 Έλεγχος Συμφόρησης ... 54
 3.4.1.1 Έλεγχος Συμφόρησης στα Ενσύρματα και Ασύρματα Δίκτυα .. 55
3.5 Δρομολόγηση ... 56

ΚΕΦΑΛΑΙΟ ΤΕΤΑΡΤΟ
ΠΡΩΤΟΚΟΛΛΑ ΜΕΤΑΦΟΡΑΣ ΠΡΑΓΜΑΤΙΚΟΥ ΧΡΟΝΟΥ 58

4.1 Έλεγχος ρυθμού μετάδοσης ... 58
4.2 Έλεγχος λαθών .. 60
Περιεχόμενα

4.3 Πρωτόκολλο Ελέγχου Μετάδοσης ... 61
 4.3.1 Πρωτοκόλλα Φιλικά Προς το TCP .. 63
4.4 Πρωτόκολλο Διαγράμματος Δεδομένων του Χρήστη 65
4.5 RTP/RTCP/RTSP ... 66
 4.5.1 Πρωτόκολλο Μεταφοράς Πραγματικού Χρόνου 67
 4.5.2 Πρωτόκολλο Ελέγχου Πραγματικού Χρόνου 73
 4.5.3 Πρωτόκολλο Ροής Πραγματικού Χρόνου .. 78
4.6 Απαιτήσεις των πρωτοκόλλων μεταφοράς πολυμέσων 82
 4.6.1 Υψηλό Throughput ... 83
 4.6.2 QoS Προδιαγραφή και Εγγύηση ... 84

5. Συμπεράσματα ... 85

Βιβλιογραφία ... 88
Πτυχιακή εργασία της Μακρή Σταματικής

ΕΙΣΑΓΩΓΗ

Η επικοινωνία δεδομένων έχει αναχθεί σε πρωταρχικής σημασίας κομμάτι της πληροφορικής. Δίκτυα, εγκατεστημένα σε όλο τον κόσμο, χρησιμοποιούνται για την διανομή δεδομένων πάνω σε ποικίλα θέματα. Από καιρό έχει κατανοηθεί η αναγκαιότητα διασύνδεσης όλων αυτών των επιμέρους δικτύων σε ένα ευρύτερο σύνολο, διευκολύνοντας και επιταχύνοντας την επικοινωνία. Οι προσπάθειες της κατασκευής αυτού του υπέρ – δικτύου ήταν επιτυχείσες και το αποτέλεσμα είναι αυτό που σήμερα ξέρουμε σαν Διαδίκτυο (Internet). Το Internet παρουσιάζει μεγάλη αποδοχή, γεγονός που οδηγεί στη συνεχή εξέλιξη και αναδιαμόρφωση του[1].

Ένα από τα μεγαλύτερα προβλήματα που έπρεπε να έπρεπε να λυθούν ώστε το Διαδίκτυο να γίνει πραγματικότητα ήταν η ύπαρξη πολλών τεχνολογιών. Για να καταφέρει το Διαδίκτυο να συνενώσει όλες αυτές τις τεχνολογίες βασίζεται σε μια συλλογή από πρωτόκολλα επικοινωνίας τη γνωστή σε όλους μας Σουίτα Πρωτοκόλλων Διαδικτύου (Internet Protocol Suite) ή αλλιώς TCP/IP. Αυτή η συλλογή πρωτοκόλλων είναι οργανωμένη σε στρώματα (layers). Το Διαδίκτυο αποτελείται, όπως βλέπουμε στο σχήμα που ακολουθεί, από τέσσερα επίπεδα και η ονομασία του προέρχεται από τις συντομογραφίες των δύο κυριότερων πρωτοκόλλων που περιέχει τα οποία είναι:
α) Πρωτόκολλο Ελέγχου Μετάδοσης (Transmission Control Protocol-TCP)
β) Πρωτόκολλο Διαδικτύου (Internet Protocol – IP)[5]
Η εργασία αυτή επικεντρώνεται στο επίπεδο Μεταφοράς. Το επίπεδο μεταφοράς είναι υπεύθυνο για την μεταφορά των δεδομένων μεταξύ των άκρων της σύνδεσης, τον έλεγχο συμφόρησης και ροής, και την ενδεχόμενη εξασφάλιση της αξιοπιστίας κατά τη μετάδοση.

Το πρωτόκολλο ελέγχου Μετάδοσης (TCP) είναι το επικρατέστερο πρωτόκολλο για την μετάδοση δεδομένων στο Διαδίκτυο. Παρόλα αυτά δεν είναι το προτιμητέο για εφαρμογές ροής πολυμέσων που απαιτούν ένα κανονικό ρυθμό μετάδοσης των δεδομένων. Έτσι έχουν προκύψει άλλες επεκτάσεις του πρωτόκολλου TCP [7] για να εξεταστούν οι περιορισμοί του πρωτόκολλοι του TCP για την αποτελεσματική μετάδοση πολυμέσων.

Μια εναλλακτική λύση για τη μετάδοση πολυμεσικών ροών αποτελεί το Πρωτόκολλο Διαγράμματος Δεδομένων του Χρήστη (User Datagram Protocol – UDP). Το UDP ένα είναι ελαφρύ πρωτόκολλο χωρίς αξιοπιστία και έλεγχο συμφόρησης ή ροής. Συνεπώς το UDP εμφανίζεται καταλληλότερο για εφαρμογές οι οποίες ανέχονται μερική απώλεια πακέτων, όπως οι πολυμεσικές. Παρόλα αυτά, η έλλειψη μηχανισμού ελέγχου συμφόρησης είναι μια σημαντική ανεπάρκεια του UDP, καθώς η υπάρχει η τάση για περιορισμό αυτών των πρωτόκολλων.

Σχήμα 1. Επίπεδα του Διαδικτύου
Πτυχιακή εργασία της Μακρή Σταματικής

Σήμερα με την ανάπτυξη των πολυμεσικών και δικτυακών τεχνολογιών η πολυμεσική πληροφορία έχει κυριαρχήσει στο Διαδίκτυο. Η κινούμενη εικόνα (animation), ο ήχος και τα βίντεο γίνονται όλο και πιο δημοφιλή. Η μετάδοση πολυμεσικής πληροφορίας έχει μεταβάλλει τον υπολογιστή σε ένα επικοινωνιακό εργαλείο. Είναι πολύ πιθανό τα πολυμεσικά δίκτυα να αντικαταστήσουν κάποια στιγμή το τηλέφωνο, την τηλεόραση και άλλες πολλές εφευρέσεις που άλλαξαν δραματικά τη ζωή μας.

Πρέπει όμως να λάβουμε υπόψη και κάποια προβλήματα που υπάρχουν στη μετάδοση δεδομένων πολυμεσικής μορφής. Πολλές πολυμεσικές εφαρμογές απαιτούν επικοινωνία σε πραγματικό χρόνο. Στη μετάδοση για παράδειγμα κάποιου βίντεο πρέπει να υπάρχει συνέχεια. Αν τα δεδομένα δεν φτάνουν στην ώρα τους για να μεταδοθούν δημιουργούνται κενά τα οποία γίνονται αντιληπτά από τον χρήστη και υποβαθμίζουν την ποιότητα της πολυμεσικής πληροφορίας. Η καθυστέρηση λοιπόν της μετάδοσης των δεδομένων είναι ένα από τα πιο σημαντικά προβλήματα που παρουσιάζεται στη μετάδοση πολυμεσικών εφαρμογών. Για την αποτελεσματική μετάδοση ενός πολυμεσικού αρχείου θα πρέπει να αποτελείται σε χαμηλά επίπεδα και να μην ξεπερνά ένα όριο, ώστε να μπορεί να επιτυγχάνεται η ομαλή αναπαραγωγή του αρχείου.

Ένα ακόμη πρόβλημα είναι οι απαιτήσεις σε χωρητικότητα των πολυμεσικών εφαρμογών. Ο όγκος δεδομένων που μεταδίδει μια πολυμεσική εφαρμογή είναι συχνά μεγάλος. Για αυτό χρησιμοποιούνται και τεχνικές συμπίεσης της πολυμεσικής πληροφορίας με στόχο την μείωση του μεταδιδόμενου όγκου δεδομένων.

Για τη βελτίωση της απόδοσης των πολυμεσικών εφαρμογών, συχνά χρησιμοποιείται ένας καταχωρητής (buffer) περιορισμένου μεγέθους στον παραλήπτη, οπού εκεί αποθηκεύονται προσωρινά τα δεδομένα που μεταδίδονται. Αν τα δεδομένα έρχονται πολύ γρήγορα μπορεί να επέλθει υπερχείλιση του καταχωρητή, με αποτέλεσμα την απώλεια δεδομένων. Εάν πάλι τα δεδομένα καταφθάνουν σε πολύ αργούς ρυθμούς η
Εισαγωγή

εφαρμογή υπολειτουργεί και προκαλείται καθυστέρηση. Οπότε αν δεν ληφθούν μέτρα για τη συνεχή και αδιάκοπη ροή των δεδομένων, η ποιότητα της πολυμεσικής εφαρμογής μπορεί να υποβαθμιστεί αισθητά.

Επίσης αν και ο κύριος κορμός του Διαδικτύου επιτρέπει την επίτευξη υψηλών ταχυτήτων μεταφοράς, είναι πιθανόν να εμφανιστεί, στη διαδρομή από τον διακομιστή ροής μέχρι τον τελικό χρήστη, συμφόρηση. Συμφόρηση προκαλείται όταν η αυξημένη κίνηση δεδομένων προκαλεί υπερχείλιση των καταχωρητών των δρομολογητών κατά μήκος της δικτυακής διαδρομής, με αποτέλεσμα απώλειες πακέτων που υποβαθμίζουν την ποιότητα αναπαραγωγής των πολυμεσικών ροών.

Εκτός από όλα τα προβλήματα που αναφέρθηκαν παραπάνω σε σχέση με τις πολυμεσικές εφαρμογές και τις ιδιαίτερες απαιτήσεις τους, η κατάσταση περιπλέκεται ακόμη από την ποικιλία των συσκευών που χρησιμοποιούνται. Εκτός από όλα τα προβλήματα που αναφέρθηκαν παραπάνω σε σχέση με τις πολυμεσικές εφαρμογές και τις ιδιαίτερες απαιτήσεις τους, η κατάσταση περιπλέκεται ακόμη περισσότερο από την ποικιλία των συσκευών των χρηστών και την ετερογένεια των δικτύων που αποτελούν το Διαδίκτυο[7].

Λαμβάνοντας υπόψη την ολόληψη της πολυμεσικής πληροφορίας στην καθημερινή μας ζωή είναι σημαντικό να προσπαθήσουμε να βελτιώσουμε την απόδοση των πολυμεσικών εφαρμογών και να περιορίσουμε τα προβλήματα που παρουσιάζονται. Πρόκειται για την επίτευξη υψηλών ταχυτήτων μεταφοράς, αλλά και για την αποτελεσματική λειτουργία των πολυμεσικών εφαρμογών.

Για τους λόγους αυτούς, ιδιαίτερα στο πεδίο των τηλεοπτικών πολυμεσικών εφαρμογών, είναι απαραίτητο να εξευρεθούν μέτρα για την επίτευξη υψηλών ταχυτήτων μεταφοράς και την ασφάλεια της πολυμεσικής πληροφορίας. Σε περίπτωση που στην αποστολή παρουσιαστούν απώλειες, η ύπαρξη των προβλημάτων υποβαθμίζει την ποιότητα αναπαραγωγής των πολυμεσικών εφαρμογών.
αυτό σημαίνει ότι υπάρχει συμφόρηση στο δίκτυο. Οπότε οι μηχανισμοί ελέγχου ροής θα πρέπει να μειώνουν το παράθυρο ροής όταν ανιχνεύουν απώλεια πακέτων έτσι ώστε να υπάρχει όσο το δυνατόν πιο ποιοτική αναπαραγωγή κάποιου βίντεο.

Στο πρώτο κεφάλαιο θα αναφερθούμε στη Διαχείριση της Ποιότητας Υπηρεσιών η οποία γίνεται όλο και σημαντικότερη για τα πληροφοριακά συστήματα, καθώς επίσης και στην απόδοση των πολυμεσικών εφαρμογών, στα χαρακτηριστικά και στα κριτήρια τους. Στο δεύτερο κεφάλαιο θα αναφερθούμε στις τεχνολογίες ροής, στα χαρακτηριστικά και στα πρότυπα συμπίεσης, που έχουν ως στόχο την οικονομία του εύρους φάσματος. Στο τρίτο κεφάλαιο θα αναφερθούμε στα προβλήματα που παρουσιάζουν οι πολυμεσικές εφαρμογές και κατά πόσο αυτά τα προβλήματα επηρεάζουν το τελικό αποτέλεσμα της πολυμεσικής εφαρμογής. Στο τέταρτο κεφάλαιο θα αναφερθούμε στα πρωτόκολλα πραγματικού χρόνου, τα οποία είναι απαραίτητα για την υποστήριξη επικοινωνιών πολυμέσων, και στις απαιτήσεις που φέρουν τα πρωτόκολλα μεταφοράς πολυμέσων. Τέλος θα αναφερθούμε σε κάποια συμπεράσματα που ο κάθε ένας από εμάς, γνώστης ή μη των πληροφοριακών συστημάτων, μπορεί να κατανοήσει.
Εισαγωγή

ΚΕΦΑΛΑΙΟ 1: ΠΟΛΥΜΕΣΙΚΕΣ ΕΦΑΡΜΟΓΕΣ ΚΑΙ ΕΚΤΙΜΗΣΗ ΑΠΟΔΟΣΗΣ

1.1 Διαχείριση Υπηρεσιών Ποιότητας στην Ροή Πολυμέσων

Η Ποιότητα Υπηρεσιών γίνεται όλο και σημαντíκτερη για τα πληροφοριακá συστήματα πολυμέσων. Σε τούτο τον τομέα δίδεται μια περίληψη των απαιτήσεων στην Ποιότητα Υπηρεσιών, καθώς και θεμάτων στενά συνδεδεμένων με την διαδικασία ροής. Οι εφαρμογές ροής πολυμέσων, ανάμεσα σε άλλες, απαιτούν μια πιο περίπλοκη διαχείριση της Ποιότητας Υπηρεσιών. Αυτό σημαίνει ότι, εκτός από συγκεκριμένες παραμέτρους της εφαρμογής ή του δικτύου, οι απαιτήσεις Ποιότητας Υπηρεσιών μιας εφαρμογής πολυμέσων προσδιορίζονται συνήθως από συγκεκριμένες προτιμήσεις του χρήστη και από την αντίληψή του για την Ποιότητα Υπηρεσιών, καθώς και από τα χαρακτηριστικά της συσκευής λήψης. Έτσι συζητούμε χωριστά:

α) τις απαιτήσεις της απ' άκρου εις άκρο εφαρμογής ροής πολυμέσων

β) τις παραμέτρους της Ποιότητας Υπηρεσιών Διαδικτύου και

γ) τις σχετικές προτιμήσεις του χρήστη.
Πτυχιακή εργασία της Μακρή Σταματικής

1.2 Δεν χρειάζονται όλες οι εφαρμογές τις ίδιες υπηρεσίες: Απαιτήσεις και Ταξινόμηση

Η κατάσταση του δικτύου, καθώς αυτή αντανακλά στις παραμέτρους Ποιότητας Υπηρεσιών, επηρεάζει σημαντικά την απόδοση της εφαρμογής πολυμέσων. Μεγάλες καθυστερήσεις, για παράδειγμα, στην διαδρομή του δικτύου έχουν κατευθείαν αντίκτυπο στον χρόνο αντίδρασης της εφαρμογής. Παρόλα αυτά, ο χρήστης δεν είναι σε θέση να αξιολογήσει την απόδοση Ποιότητας Υπηρεσιών του δικτύου και δεν θα πρέπει να απασχολείται με τις λεπτομέρειες του πως υλοποιείται μια υπηρεσία δικτύου. Εάν ένας χρήστης λαμβάνει ροή βίντεο με διακύμανση καθυστέρησης, δεν είναι σίγουρος αν ευθύνεται το δίκτυο (απόκλιση καθυστέρησης) ή η εφαρμογή (το βίντεο δεν αποκωδικοποιήθηκε επαρκώς εξαιτίας περιορισμών της εφαρμογής ή της συσκευής). Αυτό το οποίο είναι εμφανές, από την άποψη του τελικού χρήστη, είναι η συνολική απόδοση της εφαρμογής[7]. Για το λόγο αυτό, τούτο θα πρέπει να εκφραστεί με όρους μετρικής της αντίληψης του χρήστη. Η σχέση των παραμέτρων Ποιότητας Υπηρεσιών σε επίπεδο εφαρμογής με τις παραμέτρους Ποιότητας Υπηρεσιών του δικτύου εξαρτάται βασικά από τον τύπο της εφαρμογής και τον τύπο του σχετικού υλικού πολυμέσων. Κατόπιν εμπεριστατωμένης μελέτης των δύο αυτών απόψεων, παρουσιάζουμε στην συνέχεια μια ταξινόμηση αυτής της μορφής, όπου οι εφαρμογές κατηγοριοποιούνται στις ακόλουθες κατηγορίες:

1.2.1 Ελαστικές και Μη Ελαστικές

Οι ελαστικές εφαρμογές ανέχονται καθυστέρηση και απόκλιση εξόδου χωρίς αξιοσημειωτή υποβάθμιση της απόδοσης. Το αποτέλεσμα αυτό καθαυτό της μεταφοράς δεδομένων δεν επηρεάζεται, παρόλο που οι δυσμενείς συνθήκες του δικτύου υποβαθμίζουν συνήθως την απόδοση της
εφαρμογής[7]. Τυπικά παραδείγματα ελαστικών εφαρμογών αποτελούν οι
παραδοσιακές εφαρμογές μεταφοράς δεδομένων, όπως κίνηση http,
υπηρεσίες ηλεκτρονικού ταχυδρομείου και μεταφοράς αρχείων

Οι µη ελαστικές είναι εφαρμογές πραγματικού χρόνου, οι οποίες
είναι συγκριτικά µη ανεκτικές σε καθυστέρηση και αποκλίσεις εξόδου ή
καθυστέρησης, επηρεάζονται επίσης από παραμέτρους αξιοπιστίας, όπως
η απώλεια πακέτων και τα σφάλματα ψηφίου. Οι µη ελαστικές εφαρμογές
παραδίδουν ικανοποιητική απόδοση µόνο υπό συγκεκριµένους όρους
Ποιότητας Υπηρεσιών, οι οποίοι µπορεί να ποικίλουν ανάλογα µε το
καθήκον της εφαρμογής και τον σχετικό τύπο πολυµέσων.

1.2.2 Ανεκτικές και Μη Ανεκτικές

Οι ανεκτικές εφαρμογές είναι συνήθως ανελαστικές οι οποίες
ανέχονται συγκεκριµένα επίπεδα υποβάθμισης της Ποιότητας Υπηρεσιών
και λειτουργούν ικανοποιητικά μέσα σε µία έκταση αξιών Ποιότητας
Υπηρεσιών. Οι περισσότερες εφαρμογές ροής πολυµέσων υπάγονται σε
αυτήν την κατηγορία, καθώς έχουν µεν συγκεκριµένες απαιτήσεις
Ποιότητας Υπηρεσιών, δεν είναι όµως εξαιρετικά ευαίσθητες σε
καθυστέρηση, απόκλιση καθυστέρησης και απώλεια πακέτων. Μια
εφαρμογή ροής εικόνας, για παράδειγµα, ανέχεται όµως εξαιρετικά
επίπεδο απώλειας πακέτων με ελάχιστες αλλοιώσεις. Οι ανεκτικές
εφαρμογές ταξινοµούνται περαιτέρω µε βάση την προσαρµοστικότητά
τους:

- Ελαστικές προσαρµοστικές εφαρμογές: ενσωµατώνουν
μηχανισµούς προκειµένου να προσαρµοστούν σε
συγκεκριµένες συνθήκες δικτύου, όπως αυξηµένη κίνηση,
διάφορες καθυστερήσεις, απώλεια πακέτων και συµφόρηση.
Μια προσαρµοστική εφαρµογή µπορεί να είναι σε θέση να
µειώσει τον ρυθµό µετάδοσης της σε περιόδους
περιορισμένης διαθεσιμότητας εύρους ζώνης (ή ακόμα και
συμφόρησης) ή να δημιουργήσει προσωρινή αποθήκευση
ώστε να ελαττώσει την απόκλιση καθυστέρησης.

- Οι ανεκτικές μη προσαρμοστικές εφαρμογές: δεν είναι σε
θέση να προσαρμοστούν με τον ίδιο τρόπο, μπορούν όμως
να ανεχθούν μερική απόκλιση στην Ποιότητα Υπηρεσιών του
dικτύου.

Οι μη ανεκτικές εφαρμογές λειτουργούν μόνο υπό αυστηρές
απαιτήσεις Ποιότητας Υπηρεσιών. Αν αυτά τα αιτήματα Ποιότητας
Υπηρεσιών δεν ικανοποιούνται, το αποτέλεσμα είναι μη παραδεκτό και το
καθήκον της εφαρμογής αποτυγχάνει. Αν και οι μη ανεκτικές εφαρμογές
dεν ανέχονται την παραμόρφωση της προσαρμογής καθυστέρησης,
ενδέχεται εν τούτων να είναι σε θέση να εκμεταλλευτούν την προσαρμογή
ρυθμού. Οι εφαρμογές καλούνται προσαρμόσιμες στον ρυθμό, εφόσον
είναι σε θέση να προσαρμόσουν τον ρυθμό τους σε στιγμιαίες αλλαγές
εξόδου[7]. Υπάρχουν, για παράδειγμα, συγκεκριμένοι αλγόριθμοι
κωδικοποίησης εικόνας, οι οποίοι είναι σε θέση να ανταλλάξουν ρυθμό
dedoménon énanti poióttitas.

1.3 Απόδοση πολυμεσικών εφαρμογών (Application quality)

Η μετάβαση στην Ποιότητα Υπηρεσιών δικτύου επιτρέπει τον
ορισμό των κριτηρίων τα οποία βασίζονται σε διάφορες παραμέτρους.
Παρόλα αυτά, τέτοια μοντέλα Ποιότητας Υπηρεσιών σχεδιάζονται
χρησιμοποιώντας δίκτυου-κεντρικές παραμέτρους ποιότητας (διαθέσιμο
εύρος ζώνης, καθυστέρηση, απόκλιση καθυστέρησης). Οι
προγραμματιστές και οι χρήστες των εφαρμογών από την άλλη,
χρειάζονται μοντέλα ποιότητας τα οποία να έχουν ρυθμιστεί ώστε να

Σελίδα 15 από 91
ταιριάζουν με τις ανάγκες τους και τα οποία εκφράζονται με διάφορα χαρακτηριστικά επίδοσης, όπως ο χρόνος απόκρισης, προβλεψιμότητα, συνεκτική αντιληπτική ποιότητα. Αυτά είναι κριτήρια τα οποία ορίζουν αυτό που ονομάζεται ποιότητα εφαρμογής. Ο όρος ποιότητα εφαρμογής είναι πολύ ασαφής ώστε να οριστεί ντετερμιστικά. Ο λόγος είναι, ότι οι παράγοντες οι οποίοι ορίζουν την ποιότητα είναι αρκετά πολύπλοκοι. Τέτοιοι παράγοντες συμπεριλαμβάνουν τις προσδοκίες και την εμπειρία του χρήστη, το καθήκον της εφαρμογής ή το κατά πόσο η εφαρμογή επιτυγχάνει τα αναμενόμενα επίπεδα επίδοσης[7]. Επιπροσθέτως, και κάποιοι ακόμα παράγοντες όπως η χρέωση για την χρήση των πόρων του υποκείμενου δικτύου ή της υπηρεσίας επηρεάζουν επίσης την ποιότητα της εφαρμογής.

Ακόμα μία άποψη ποιότητας, η οποία συνήθως υποτιμάται ή αγνοείται, είναι η κοινωνική συμπεριφορά μεμονωμένων εφαρμογών σε ένα περιβάλλον όπως το Διαδίκτυο. Εφαρμογές οι οποίες επιχειρούν επιθετικά να αποκτήσουν όσο το δυνατόν περισσότερους πόρους δικτύου σε ένα δίκτυο το οποίο δεν επιβάλλει ευθέως ποινές για τέτοιες πράξεις, φαίνεται σαν να βελτιώνουν την δική τους ποιότητα εν συγκρίσει με εφαρμογές οι οποίες είναι προσεκτικές (όπως αυτές οι οποίες βασίζονται σε μετάδοση TCP). Ακάθιστο και εκτεταμένος χρήσιμος στην πρακτική είναι ποιότητα εφαρμογής, η οποία μπορεί να διαλέγεται σε συνδυασμό με τις άλλες επιλογές. Επιπροσθέτως, κατά την ανάκαμψη της εφαρμογής, διαπίστωσε ότι οι διαχειριστές και σχεδιαστές των δικτύων επιδείκνυαν την ανάγκη της επεξεργασίας των εφαρμογών. Επιπροσθέτως, η νέα ικανότητα να προσαρμοστεί στην κατάσταση του δικτύου μπορεί να θεωρηθεί ως μια έμμεση όψη ποιότητας. Αν και οι διαχειριστές και οι διαχειριστές των δικτύων επιδείκνυαν την ανάγκη της επεξεργασίας των εφαρμογών, επικοινωνία και συνεργασία των εφαρμογών.
πτυχιακή εργασία της Μακρή Σταματικής

dικτύου και να προσαρμόσουν (ή να μυθίσουν) τις απαιτήσεις των πόρων τους σε ανταπόκριση των ενδειξιών μεταβολής της απόδοσής του δικτύου καλούνται ενήμερες δικτύου. Μια εφαρμογή μπορεί να είναι ενήμερη δικτύου μόνο αν μπορεί να αλλάξει τις απαιτήσεις των πόρων της αλλάζοντας κατάλληλα την συμπεριφορά της ώστε να λειτουργήσει σε διάφορες καταστάσεις.

Συνεπώς αναγνωρίζουμε κάποια σημαντικά χαρακτηριστικά στην συμπεριφορά μιας εφαρμογής τα οποία συνδέονται στενά με την αντίληψη της ποιότητάς τους:

- Οι εφαρμογές θα πρέπει να σχεδιάζονται έχοντας κατά νου την προσαρμοστικότητα. Είναι ανάγκη να χρησιμοποιούν ενσωματωμένους μηχανισμούς οι οποίοι να τους επιτρέπουν να παρακολουθούν τις συνθήκες του περιβάλλοντος του δικτύου και να αλλάζουν τα χαρακτηριστικά μετάδοσής τους. Αυτό σημαίνει να μειώνουν τις απαιτήσεις μετάδοσής τους σε περιόδους υψηλής ζήτησης (ή συμφόρησης) και να είναι ικανές να αντληθούν γρήγορα την διαθεσιμότητά επιπλέον πόρων οι οποίοι μπορούν να βελτιώσουν την ποιότητά τους. Με τον τρόπο αυτό οι εφαρμογές όχι μόνο επιπλέον αντιληφθούν γρήγορα την διαθεσιμότητα επιπλέον πόρων οι οποίοι μπορούν να βελτιώσουν την ποιότητά τους, αλλά και συμβάλλουν στην ευημερία των εφαρμογών που δρουν παράλληλα με αυτές καθώς και στη σταθερότητα του δικτύου με το να μετάφερονται δίκαια τους κοινούς πόρους.

- Παρά την προσαρμοστικότητα, οι εφαρμογές θα αντιμετωπίσουν ένα μεγάλο εύρος συνθηκών δικτύου και προσφερόμενων πόρων. Μπορεί να εμφανιστούν υπό την μορφή μεταβλητού εύρους ζώνης και καθυστερήσεων όσο και ως απώλεια δεδομένων εφαρμογής. Υπό αυτές τις συνθήκες, οι εφαρμογές θα πρέπει να χρησιμοποιήσουν
Полуменосικές Εφαρμογές και Εκτίμηση Απόδοσης

μηχανισμούς που να είναι ικανοί να βελτιώσουν την επίδραση τέτοιων συμβάντων. Εξαιτίας της φύσης των μεταδιδόμενων ροών δεδομένων της εφαρμογής (π.χ. δεδομένων ήχου ή εικόνας), υπάρχει ένα έμφυτο ύψος ανοχής σε διάφορες συνθήκες δικτύου χωρίς να επηρεάζεται σοβαρά η απ’ άκρου εις άκρο ποιότητα[7]. Η ανοχή σε επιδεινωμένη ποιότητα υπηρεσιών δικτύου είναι επίσης δυνατόν να αυξηθεί με την εισαγωγή άλλων μέτρων όπως προσαρμόζονται προσωρινή αποθήκευση αναπαραγωγής, διόρθωση σφαλμάτων και συγκάλυψη κλπ.

1.4 Παράμετροι Ποιότητας Υπηρεσιών Δικτύου

Τα πιο σημαντικά κριτήρια, τα οποία μπορούν να χαρακτηρίσουν την απόδοση ενός δικτύου IP και τα οποία είναι οι πιο σημαντικοί παράγοντες οι οποίοι επηρεάζουν την απ’ άκρου εις άκρο ποιότητα μιας εφαρμογής είναι:

- **Εύρος ζώνης (bandwidth).** Δηλώνει το μερίδιο της διαθέσιμης ικανότητας σε μια απ’ άκρου εις άκρο δικτυακή διαδρομή στην οποία έχει πρόσβαση μια εφαρμογή ή ροή δεδομένων. Κατά συνέπεια, ο αριθμός των ψηφίων τα οποία εγχέονται στο δίκτυο από τις διάφορες ροές μιας εφαρμογής πρέπει να ρυθμιστούν ανάλογα.

- **Καθυστέρηση (delay).** Η καθυστέρηση δικτύου ανταποκρίνεται στον χρόνο που χρειάζονται οι μονάδες δεδομένων της εφαρμογής για να μεταφερθούν από το δίκτυο στον προορισμό τους. Η καθυστέρηση δικτύου προκαλείται από τον συνδυασμό των καθυστερήσεων διαστάσεως, επεξεργασίας και διαφόρων καθυστερήσεων στην ουρά αναμονής στους διάφορους ενδιάμεσους δρομολογητές κατά μήκος της διαδρομής προς τον κεντρικό.
πτυχιακή εργασία της Μακρή Σταμάτης
υπολογιστή προορισμού. Μεγάλες καθυστερήσεις είναι
dυνατόν να προκαλέσουν μη διαθεσιμότητα δεδομένων και
ακατάλληλη επικοινωνία πραγματικού χρόνου με αρνητικές
συνέπειες για τον χρήστη της εφαρμογής.

- Απόκλισης καθυστέρησης (jitter). Η απόκλισης καθυστέρησης

προκαλείται συνήθως από την συςσώρευση προσωρινής
αποθήκευσης στους δρομολογητές σε περιόδους αυξημένης
κίνησης, και λιγότερο συχνά εξαιτίας αλλαγών
δρομολόγησης λόγω βλαβών ή σε περιόδους ανανέωσης
των πινάκων δρομολόγησης. Το πόσο απόκλιση
καθυστέρησης του δικτύου μπορεί να ανεχθεί μια εφαρμογή
εξαρτάται από ένα άρθρωμα παραγόντων, από τους οποίους ο
ποιος κοινός έχει σχέση με την φύση των καθηκόντων ανά
dευτερόλεπτο. Εξαρτάται επίσης από την απόκλιση
καθυστέρησης η οποία εισάγεται από άλλα συστήματα κατά
μήκος της απ’ άκρου εις άκρο διαδρομής της εφαρμογής
(όπως π.χ. το λειτουργικό σύστημα ή την διαδικασία
cωδικοποίησης πολυμέσων). Εφαρμογές με αυστηρές
απαιτήσεις καθυστέρησης μπορούν να ανεχθούν ελάχιστη
απόκλιση καθυστέρησης. Άλλες εφαρμογές μπορούν να το
αντισταθμίσουν αυτό καθυστερώντας όσο χρειάζεται την
παρουσίαση προκειμένου να αποθηκεύσουν προσωρινά
όσα δεδομένα είναι απαραίτητα για να εξομαλύνουν την
dιακύμανση καθυστέρησης. Έστω κι έτσι, υπάρχει όριο στο
πόσα προσωρινά δεδομένα μπορούν να αποθηκευτούν.
Αυτό εξαρτάται από την ανοχή καθυστέρησης της
eφαρμογής και τους περιορισμούς της μνήμης προσωρινής
αποθήκευσης. Εκτεταμένο jitter ενδεχομένως να χρειάζεται
προσωρινή αποθήκευση μεγάλου βάθους, η οποία
προκαλεί μεγάλες καθυστερήσεις πριν την
αποκωδικοποίηση, αναπαραγωγή ή επεξεργασία των
δεδομένων, οι οποίες με την σειρά τους δυσκολεύουν τον αυτόματο συντονισμό της αποθήκευσης μεγάλου βάθους[8].

- **Απώλεια πακέτων (packet loss).** Η απώλεια πακέτων είναι συνήθως το αποτέλεσμα εκτεταμένης συμφόρησης του δικτύου. Ορίζεται ως το κλάσμα (ή ποσοστό) IP πακέτων, από το σύνολο των μεταδιδόμενων πακέτων, τα οποία χάνονται κάπου κατά μήκος της διαδρομής από την πηγή προς τον προορισμό. Για τις περισσότερες εφαρμογές (ιδίως τις εφαρμογές πολυμέσων) το ποσοστό αυτό καθαυτό της απώλειας πακέτων δεν επαρκεί πάντα για να εκτιμηθεί ο αντίκτυπος που έχει επί της ποιότητας. Σε τέτοιες περιπτώσεις η συχνότητα των απωλειών είναι μια επίσης σημαντική παράμετρος.

- **Η περίοδος απώλειας (loss period).** Η περίοδος απώλειας είναι συχνά εξίσου σημαντική καθώς προσφέρει πολύτιμες υποδείξεις στους σχεδιαστές κωδίκων και εφαρμογών. Η πιο αξιοσημείωτη παρατήρηση σχετικά με τα μοτίβα απώλειας στο σημερινό Διαδίκτυο είναι ότι έχουν εκρηκτική φύση, οι απώλειες δηλαδή παρουσιάζονται υπό τη μορφή μικρών ριπών (περιστασιακά, σε περιόδους ακραίας συμφόρησης, οι ριπές αυτές μπορεί να είναι σημαντικής διάρκειας). Εμφανίζονται επίσης και μεμονωμένες απώλειες. Η απώλεια είναι δυνατόν να προκαλέσει είτε επουσιώδεις παραμορφώσεις είτε και σημαντικές υποβαθμίσεις της ποιότητας, κάτι το οποίο εξαρτάται από τους μηχανισμούς κωδικοποίησης που χρησιμοποιούνται ή τον τύπο δεδομένων που μεταφέρεται καθώς επίσης και από το αν χρησιμοποιούνται ή όχι τεχνικές διόρθωσης σφαλμάτων και συγκάλυψης[8]. Υπάρχει αξιοσημείωτη ποσότητα μετρήσεων και έρευνας με στόχο τον χαρακτηρισμό και την μοντελοποίηση των μοτίβων απώλειας πακέτων στο Διαδίκτυο.

Σελίδα 20 από 91
1.5 Κριτήρια Εκτίμησης της Απόδοσης των Πολυμεσικών Εφαρμογών.

Τα κριτήρια εκτίμησης της απόδοσης των Πολυμεσικών Εφαρμογών του δικτύου που αναφέρθηκαν πιο πάνω δεν συμπέπτουν κατ’ ανάγκη με την αντίληψη της εφαρμογής για τις παραμέτρους της Ποιότητας Υπηρεσιών. Η υποβάθμιση της επίδοσης της εφαρμογής θα πρέπει να εκφράζεται σε όρους οι οποίοι να εστιάζουν σε αποτελέσματα αντιληπτά από τον χρήστη. Για παράδειγμα, ο τελικός χρήστης μιας εφαρμογής βλέπει μόνο μία τελική κατάσταση και δεν μπορεί να διακρίνει την αιτία της, είτε προέρχεται από το δίκτυο είτε από την επεξεργασία που διενεργείται στο τελικό σύστημα.

Τα κριτήρια απόδοσης σε επίπεδο εφαρμογής περιλαμβάνουν:

• Απώλεια πληροφοριών (ή δεδομένων). Στο επίπεδο αντίληψης του χρήστη, η απώλεια πληροφοριών δεν συμπέπτει αναγκαστικά με την απώλεια πακέτων δεδομένων σε επίπεδο δικτύου (εξαιτίας κυρίως της απώλειας πακέτων). Μπορεί να είναι απώλεια δεδομένων σε επίπεδο εφαρμογής (για παράδειγμα απώλεια πιστότητας σήματος εξαιτίας κωδικοποίησης). Σε αυτή την περίπτωση, μεταφράζεται ως απώλεια πληροφοριών «αντιληπτή από τον χρήστη», η οποία οδηγεί σε δυσφορία του χρήστη, έλλειψη έγκαιρης κρίσης και απαιτούμενης αντίδρασης για την επιτυχή εκτέλεση της οδηγίας, ενόχληση, αποπροσανατολισμό, έλλειψη ενδιαφέροντος, κλπ. Επομένως, η απώλεια πληροφοριών ανταποκρίνεται στην ποσότητα πληροφοριών (οπτικό περιεχόμενο όπως το βλέπει ο χρήστης, απώλεια ακουστικής καθαρότητας, κλπ.) την οποία ο χρήστης αντιλαμβάνεται ως απούσα. Πρέπει επίσης να σημειώσουμε ότι αυτά τα κριτήρια μπορεί να έχουν πάντα και μια υποκειμενική συνιστώσα. Για παράδειγμα, κάποιος χρήστης
μπορεί να μην είναι ευχαριστημένος από την ποιότητα μιας πολυμεσικής ροής ακόμα και σε ένα περιβάλλον δικτύου χωρίς απώλειες. Επίσης, πιο συχνά, και παρόλο που γεγονός ότι τα δεδομένα χάνονται στο δίκτυο, ο χρήστης μπορεί να μην καταλάβει ή να μην αντιληφθεί κατ’ αυτόν τον τρόπο. Αυτή είναι πάρα πολύ ενδιαφέρουσα παρατήρηση η οποία μπορεί να αντικρούσει τις προσεγγίσεις «καθορισμών» στις απαιτήσεις Ποιότητας Υπηρεσιών και τις «ζώνες ανοχής».

- Απόκλιση καθυστέρησης (jitter). Αν και ορισμένα επίπεδα απόκλισης καθυστέρησης μπορούν να απορροφηθούν από την τελική εφαρμογή με την χρήση της προσωρινής αποθήκευσης, η εκτεταμένη απόκλιση της απ’ άκρου εις άκρο καθυστέρησης σημαίνει ότι τα πακέτα δεδομένων της εφαρμογής μπορεί να φτάσουν τον παραλήπτην πολύ αργά για να είναι χρήσιμα. Η απόκλιση καθυστέρησης μπορεί επίσης να παράγει χρονική ανακολουθία στην παρουσίαση των δεδομένων στον χρήστη (η κινούμενη εικόνα παγώνει και μετά ξεκινά πάλι) η οποία καταλήγει στο να εκνευριστεί ο χρήστης και να χάσει την αίσθηση της παρουσίας. Παρόλα αυτά, για υπηρεσίες μη ανεκτικές στην απόκλιση καθυστέρησης, το jitter μπορεί να αφαιρεθεί μέσω προσωρινής αποθήκευσης από την εφαρμογή, κάτι τέτοιο όμως σημαίνει την προσθήκη ενός ακόμη δαπανηρού συστατικού καθυστέρησης στην απ’ άκρου εις άκρο λανθάνουσα κατάσταση[7].

Είναι πολύ σημαντικό να δώσουμε έμφαση εδώ, στο ότι τα ανωτέρω κριτήρια εκτίμησης της απόδοσης της πολυμεσικής εφαρμογής δεν επηρεάζονται μόνο από τα δίκτυο-κεντρικά κριτήρια. Πολλοί άλλοι παράγοντες κατά μήκος της απ’ άκρου εις άκρο διαδρομής της εφαρμογής μπορεί να καταλήξουν σε ανεπιθύμητες αλλαγές των παραμέτρων απόδοσης, όπως η ανικανότητα του λειτουργικού συστήματος να υποστηρίξει την εφαρμογή, εσφαλμένες υλοποιήσεις στοίβας εφαρμογής.
και πρωτοκόλλου, το περιβάλλον χρήσης (λ.χ. ελαττωματικός εξοπλισμός), κλπ. Στις περισσότερες από αυτές τις περιπτώσεις, όταν διερευνάτε το πώς επηρεάζεται η ποιότητα ή η ποιότητα της εφαρμογής, τότε είναι οι παράμετροι απόδοσης σε επίπεδο εφαρμογής και όχι σε επίπεδο δικτύου που μπορούν να μετρήσουν, να καταλάβουν την επίδρασή τους και εν συνεχεία να προτείνουν επιθυμητές αξίες ή ιδιότητες. Τούτο θα πρέπει να υπερτονιστεί προς αποφυγή εσφαλμένων συμπερασμάτων και παρανοήσεων από σχεδιαστές και ερευνητές δικτών. Πιο παράδειγμα, είναι γνωστό από δοκιμαστικά χρησιμοποιώντας πειράματα, ότι για εφαρμογές τηλεδιάσκεψης, η αλληλεπίδραση γίνεται προβληματική όταν η καθυστέρηση μονομερώς είναι υψηλότερη από 300-400 ms. Αυτό δεν σημαίνει ότι η απαίτηση της εφαρμογής από το υποκείμενο δίκτυο είναι για καθυστέρηση μετάδοσης μικρότερης των 300-400 ms. Άλλες καθυστερήσεις οι οποίες εισάγονται στην απ’ άκρο εις άκρο διαδρομή των πληροφοριακών μονάδων εφαρμογής (υλικές συσκευές σύλληψης, καθυστερήσεις κωδικοποίησης και προσωρινής αποθήκευσης, προγραμματισμός καθυστερήσεων από το λειτουργικό σύστημα) σημαίνουν ότι η απαίτηση για απώλειες είναι συνεχώς μικρότερες. Στην πράξη, αποδείχθηκε ότι σε μερικές περιπτώσεις κατά την διάρκεια μετάδοσης HDTV, οι περιορισμοί του τελικού συστήματος (κάρτες PCI, κάρτες σύνδεσης δικτύου) παρά το idιο το δίκτυο υπήρξε ο κύριος περιορισμός των περάσαμάτων που περιγράφονται διενεργήθηκαν σε συνθήκες ελαφρού φόρτου του δικτύου).
Πολυμεσικές Εφαρμογές και Εκτίμηση Απόδοσης

ΚΕΦΑΛΑΙΟ 2: ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΚΑΙ ΠΡΟΤΥΠΑ ΠΟΛΥΜΕΣΙΚΩΝ ΡΟΩΝ

2.1 Ποιότητα Υπηρεσιών Κίνησης Πολυμέσων (Multimedia Traffic)

Η πολυμεσική κίνηση έχει ιδιαίτερες ιδιότητες και χαρακτηριστικά, τα οποία διαφέρουν από την παραδοσιακή κίνηση δεδομένων. Αυτές οι ιδιότητες επηρέαζουν προκλητικές απαιτήσεις στην Ποιότητα Υπηρεσιών για τα πληροφοριακά συστήματα πολυμέσων. Η αποτελεσματικότητα της διαχείρισης της Ποιότητας Υπηρεσιών είναι έντονα εξαρτημένη από την φύση της κίνησης που πρόκειται να εξυπηρετηθεί. Η επιλογή ενός κατάλληλου (αν όχι του καταλληλότερου) μοντέλου πηγών κίνησης πολυμέσων είναι πολύ σημαντική, καθώς ο χαρακτηρισμός των πηγών κίνησης επηρεάζει την αποτελεσματική και ευέλικτη διαχείριση δικτύου σε όρους αποδοχής σύνδεσης, διαπραγμάτευσης Ποιότητας Υπηρεσιών, ελέγχου συμφόρησης, ενίσχυσης κίνησης και κατανομής πόρων[11].

Γενικά, η πολυμεσική κίνηση ταξινομείται σε:
α) συνεχή ρυθμό (CBR constant bit-rate) και
β) μεταβλητό ρυθμό (VBR variable bit-rate).

Παρόλο που η κίνηση πολυμέσων τύπου VBR έχει συγκεκριμένα πλεονεκτήματα (καλύτερη ποιότητα, μικρότερη καθυστέρηση και χαμηλότερο ύψος ρυθμού), είναι ευαίσθητη στις καθυστερήσεις, επιρρεπετικά σε ξεπερασμάτα και εξαρτώμενη από την μεγάλη απόσταση. Για το λόγο αυτό, η κίνηση τύπου CBR είναι ευαίσθητη σε περισσότερα επιθυμήτικα στοιχεία, ιδίως όταν ο στόχος είναι η σταθεροποίηση και μετάδοση. Επιπροσθέτως, ο τύπος CBR διευκολύνει την κατανομή πόρων και την διαχείριση δικτύου, χάρη στα προβλέψιμα μοτίβα διακίνησης. Η κίνηση πολυμέσων είναι αντικείμενο πολλών ερευνητικών μελετών. Για την ακρίβεια, σχετικές προτάσεις στοχεύουν στο να ορίσουν ένα καλύτερο αιτιοκρατικό μοντέλο...
κίνησης, το οποίο θα έχει ως αποτέλεσμα την καλύτερη αξιοποίηση του
dικτύου. Μερικές αξιοσημείωτες ερευνητικές προσπάθειες για την σύλληψη
tων στατιστικών χαρακτηριστικών της συνολικής και ετερογενούς
dιακίνησης πολυμέσων περιλαμβάνουν τα μοντέλα προσαρμοσμένης
eπεξεργασίας κατά Markov (Markov modulated process), το μοντέλο
cλασματικής κίνησης κατά Brown (Fractional Brownian motion) και το
Δεσμευτικό Διάκενο-Εξαρτώμενο μοντέλο (Bounding Interval-Dependent
BIND)[7].

2.2 Πολυμεσική Ροή

Οι πολυμεσικές ροές χωρίζονται σε δύο κατηγορίες:
α) πραγματικού χρόνου (real-time transmission) και
β) κατ’ απαίτηση (of on-demand material streaming).

Το πρώτο αποτελεί συνήθως την εκπομπή γεγονότων σε
«απευθείας μετάδοση» προς ένα σημαντικό αριθμό θεατών. Εξ’ αιτίας του
μεγέθους της ομάδας των θεατών, τέτοιου είδους ένας-προς-πολλούς
dίκτυα εξυπηρετούνται καλύτερα από δίκτυα πολυεκπομπής (multicast).
Σε αντίθεση με τα δίκτυα μονής εκπομπής (unicast), όπου οι κόμβοι
eγκαθιστούν μία αμφίδρομη σύνδεση σημείο-προς-σημείο, στα δίκτυα
πολλαπλής εκπομπής (multicast) ο διακομιστής αποστέλλει ένα και
μοναδικό αντίγραφο των δεδομένων στο δίκτυο και ένας αριθμός πελατών
τα λαμβάνει, καταλήγοντας έτσι και σε πιο αποτελεσματική αξιοποίηση του
eύρους ζώνης. Μία υπηρεσία πολλαπλής εκπομπής, με εξαίρεση
περιπτώσεις απλής αναπαραγωγής, δεν εμπεριέχει κάποιο υψηλό
επίπεδο αλληλεπίδρασης και έτσι οι πελάτες δεν έχουν έλεγχο επί της
ροής πολυμέσων την οποία λαμβάνουν. Η πολλαπλή εκπομπή απαιτεί οι
δρομολογητές (routers) να υποστηρίζουν το IP Multicast Protocol, μια απαίτηση την οποία ικανοποιούν σήμερα οι περισσότεροι δρομολογητές.

Η διαδικασία παραγωγής ροής συνίσταται στην απόκτηση, συμπίεση και μετάδοση ήχου/εικόνας. Κατά την συμπίεση το υλικό πολυμέσων κωδικοποιείται με την χρήση ενός λόγου δεδομένων κατάλληλο για εκπομπή στο Διαδίκτυο. Εάν ο στόχος της διανομής συνιστά ένα ευρύτερο και συνεπώς πιο ετερογενές κοινό, το αρχείο πολυμέσων κωδικοποιείται συνήθως με περισσότερους λόγους δεδομένων, επιτρέποντας έτσι στον παραλήπτη να επιλέξει αυτό που ταιριάζει περισσότερο στο δίκτυό του και τις ικανότητες της συσκευής του. Κατ’ απαίτηση του πελάτη, ο διακομιστής ανασύρει αρχικά το συμπιεσμένο αρχείο ήχου/εικόνας από τις συσκευές αποθήκευσης. Το άρθρωμα ελέγχου στρώματος της εφαρμογής προσαρμόζει την ροή των στοιχείων σύμφωνα με την κατάσταση του δικτύου και τις απαιτήσεις Ποιότητας Υπηρεσιών. Η επόμενη φάση συνίσταται στην οργάνωση σε πακέτα των συμπιεσμένων δεδομένων ροής και τέλος, τα παραχθέντα πακέτα μεταδίδονται στο Διαδίκτυο. Κάθε πακέτο το οποίο φτάνει στον παραλήπτη περνά από το στρώμα μεταφοράς και μετά επεξεργάζεται από το στρώμα της εφαρμογής. Το τελικό στάδιο συνίσταται στην αποκωδικοποίηση ήχου/εικόνας. Αν μία ροή μεταφέρει συγχρόνως εικόνα και ήχο, η παρουσία μηχανισμών συγχρονισμού εγγυάται τον συγχρονισμό των δύο[7].

Σήμερα υπάρχουν τρεις επικρατέστερες εμπορικές αρχιτεκτονικές που αφορούν την ροή πολυμέσων: Τα Real System, Microsoft Media και QuickTime, καθώς επίσης και λύσεις ελεύθερου κώδικα, όπως το Darwin Streaming Server. Κάθε τεχνολογία ενσωματώνει πολλά χαρακτηριστικά και δυνατότητες που στοχεύουν στο να εκμεταλλευτούν πλήρως της δυνατότητας της τεχνολογίας ροής πολυμέσων. Παρόλα αυτά, καμία από αυτές δεν έχει καταρθώσει να εκπληρώσει πλήρως τον στόχο της. Επομένως, αν και αυτές οι μορφές επιδεικνύουν πλήρη λειτουργικότητα σε συγκεκριμένες φάσεις της ροής, έχουν παρόλα αυτά κάποιους περιορισμούς που θα έπρεπε να ληφθούν σοβαρά υπόψη.
2.3 Η τεχνολογία ροής (streaming)

Μέχρι πρόσφατα για να απολαύσουμε βίντεο στον υπολογιστή μας μέσω Διαδικτύου, έπρεπε να παραλειφθεί ολόκληρο το αρχείο και μετά να αρχίσει η αναπαραγωγή του. Το πλεονέκτημα αυτής της μεθόδου ήταν ότι μπορούσαμε να παρακολουθήσουμε βίντεο αρκετά καλής ποιότητας, ακόμα και από χαμηλής ταχύτητας συνδέσεις[17]. Το σημαντικότερο μειονέκτημα, ωστόσο, ήταν ότι ο χρήστης θα έπρεπε να περιμένει για μεγάλο χρονικό διάστημα την παραλαβή ολόκληρου του αρχείου. Παράλληλα προέκυπτε και η περίπτωση παραβίασης της πνευματικής ιδιοκτησίας αφού καθίστατο δυνατή η αντιγραφή και διανομή του αρχείου αυτού.

Για την αντιμετώπιση των προβλημάτων αυτών αναπτύχθηκε μια νέα τεχνολογία που επιτρέπει την αποστολή συμπιεσμένου ψηφιακού βίντεο μέσω δικτύων. Η πολυμεσική ροή βίντεο ή streaming video όπως λέγεται αποτελεί μια από τις εντυπωσιακότερες και ταχύτατα αναπτυσσόμενες τεχνολογίες στο Διαδίκτυο. Έχει ήδη δημιουργηθεί μια νέα αγορά γνωστή ως internet broadcast. Οι λεπτομέρειες της πολυμεσικής ροής παραμένουν για πολλούς ακόμη άγνωστες. Ακόμα και ο ορισμός του είναι στοιχειώδης και περιγραφικός. Με πιο απλά λόγια θα λέγαμε ότι περιλαμβάνει την αποστολή υλικού (βίντεο) από κάποιον κεντρικό υπολογιστή (server) σε κάποιο τερματικό μέσω δικτύου όπως είναι το Διαδίκτυο, αν και αρκετά συχνά χρησιμοποιείται για να εκφράσει μια πιο συγκεκριμένη έννοια, όπως τις ταινίες που προβάλλονται σε υπολογιστές μέσω Διαδικτύου. Ο κεντρικός υπολογιστής (server) τεμαχίζει το υλικό (media) σε πακέτα (packets) τα οποία εκτέλεσται μέσω του δικτύου σε ένα καθορισμένο αποδέκτη. Κατά την παραλαβή τους, τα πακέτα ανασυντίθενται και ξεκινά η αναπαραγωγή. Η αλληλουχία των πακέτων αυτών ονομάζεται ροή (stream) και η αναπαραγωγή του υλικού αρχίζει καθώς αυτό παραλαμβάνεται από τον υπολογιστή του χρήστη. Ενδέχεται
μάλιστα ο τελικός αποδέκτης να μην παραλάβει ποτέ το συνολικό αρχείο, αλλά απλά να αναπαράγει τα πακέτα καθώς αυτά καταφθάνουν. Για τον χρήστη η ουσία της όλης διαδικασίας εστιάζει στην προσοχή ότι το υλικό που ζητήθηκε θα αναπαραχθεί στον υπολογιστή του άμεσα και χωρίς διακοπές. Αυτός είναι και ο σημαντικότερος στόχος της πολυμεσικής ροής και ο λόγος για τον οποίο αναπτύχθηκε η τεχνολογία αυτή. Ποιοι είναι όμως οι παράγοντες που διαμορφώνουν την τελική ποιότητα; Επειδή η διαδικασία δημιουργίας και διανομής πολυμεσικού υλικού αποτελείται από αρκετά στάδια, οι παράγοντες αυτοί ποικίλουν και επηρεάζουν με διαφορετικά κάθε φορά βαρύτητα το τελικό αποτέλεσμα. Το πρώτο βήμα λοιπόν είναι η καταγραφή ή η δημιουργία του υλικού, είτε σε απευθείας ψηφιακή μορφή είτε σε αναλογική και κατόπιν να γίνει η ψηφιοποίηση της. Το επόμενο στάδιο αποτελείται από τη συμπίεση του υλικού, χρησιμοποιώντας τους κατάλληλους αλγόριθμους (codecs) που έχουν αναπτυχθεί. Αφού ολοκληρωθεί η επεξεργασία του υλικού ακολουθεί η τοποθέτηση του σε κάποιον κεντρικό υπολογιστή (server) και η αποστολή του προς τους τελικούς αποδέκτες μέσω των πρωτοκόλλων που έχουν αναπτυχθεί. Ο τρόπος με τον οποίο γίνεται η αποστολή χωρίζει την πολυμεσική ροή σε διαφορετικές μεθόδους και είδη τα οποία θα δούμε παρακάτω[9].

2.3.1 Μέθοδοι και είδη Ροής

Σήμερα υπάρχουν δύο διαφορετικές προσεγγίσεις πολυμεσικής ροής που εξυπηρετούν διαφορετικές ανάγκες και απαιτούν διαφορετικό εξοπλισμό για την λειτουργία τους. Η ουσιαστική διαφορά μεταξύ τους εστιάζεται στο συγχρονισμό ή στο μη συγχρονισμό μεταξύ του ρυθμού αποστολής και λήψης των αρχείων.
Πτυχιακή εργασία της Μακρή Σταματικής

1. Progressive streaming

Η μέθοδος progressive streaming είναι επίσης γνωστή και ως progressive download. Μέσω αυτής, το υλικό αποστέλλεται στον υπολογιστή του χρήστη με το μέγιστο πιθανό ρυθμό, ανεξάρτητα από την ταχύτητα σύνδεσης του με το Διαδίκτυο. Καθώς τα πακέτα που αποστέλλονται αρχείο καταφθάνουν στον υπολογιστή μας ανασυντίθενται και αποθηκεύονται σε αυτόν. Τα πακέτα που ακολουθούν προστίθενται στα προηγούμενα και σχηματίζουν σιγά -σιγά τα αρχικά αρχεία. Αυτό σημαίνει ότι ανά πάσα στιγμή ο χρήστης διαθέτει αποθηκευμένο ένα μέρος του αρχείου το οποίο συνεχώς μεγαλώνει έως να ολοκληρωθεί. Αυτό είναι το κύριο χαρακτηριστικό της μέθοδου και η κύρια διαφοροποίηση της από το Realtime Streaming. Ο ρυθμός αποστολής του υλικού από τον αποστολέα στον τελικό αποδέκτη είναι ανεξάρτητος από τον ρυθμό που εκείνος το παραλαμβάνει[17]. Το Progressive Download ταιριάζει ιδιαίτερα σε μικρού μήκους ταινίες που θέλουμε να παρακολούθησουμε σε υψηλή ποιότητα. Η τεχνική αυτή εγγυάται την τελική ποιότητα του βίντεο επειδή τα πακέτα που αποστέλλονται τη ροή του αρχείου (bitstream) δεν χάνονται ποτέ. Αντίθετα προστίθενται συνεχώς στο ήδη αποθηκευμένο αρχείο καθώς καταφθάνουν στον υπολογιστή μας. Αυτό σημαίνει ότι το αρχικό υλικό μπορεί να είναι υψηλής ποιότητας και όχι χαμηλής συμπίεσης. Παρόλο που η ταχύτητα σύνδεσης μας με το δίκτυο μπορεί να είναι μικρή και να μην επιτρέπει την απευθείας αναπαραγωγή του υλικού, το αρχείο θα αποθηκευτεί στον υπολογιστή μας, καθώς καταφθάνουν στον υπολογιστή μας. Αυτό σημαίνει ότι το αρχικό υλικό μπορεί να είναι υψηλής ποιότητας και όχι χαμηλής συμπίεσης. Παράλοιπο το δίκτυο χρηματοδοτεί την απευθείας αναπαραγωγή του υλικού, το αρχείο θα αποθηκευτεί στον υπολογιστή μας και θα λειτουργεί ως αρχείο αρχείου (bitstream) και θα λειτουργεί ως αρχείο αρχείου (bitstream). Παράλοιπο το δίκτυο θα λειτουργεί ως αρχείο αρχείου (bitstream) και θα λειτουργεί ως αρχείο αρχείου (bitstream). Παράλοιπο το δίκτυο θα λειτουργεί ως αρχείο αρχείου (bitstream) και θα λειτουργεί ως αρχείο αρχείου (bitstream).
χαρακτηριστικά και Πρότυπα Πολυμεσικών Ροών

υπερφορτωμένος ή αντιμετωπίζει προβλήματα, τα πακέτα που αποτελούν το αρχείο καθυστερούν να φτάσουν και ο χρήστης παρατηρεί ενοχλητικές διακοπές κατά την αναπαραγωγή ενός βίντεο.

2. Ροή Πραγματικού Χρόνου (Realtime Streaming)

Με την μέθοδο αυτή ο ρυθμός αποστολής του υλικού ελέγχεται ώστε να προσεγγίζει τον ρυθμό λήψης του από τον υπολογιστή του χρήστη. Αφού λοιπόν το υλικό αποστέλλεται με τον ίδιο ρυθμό που παραλαμβάνεται μπορούμε να το παρακολουθήσουμε σε πραγματικό χρόνο. Όπως είναι φυσικό η τεχνική αυτή είναι κατάλληλη για την μετάδοση πραγματικού χρόνου περιεχομένου όπως οι ζωντανές εκδηλώσεις και οι συναυλίες. Το κυριότερο μειονέκτημα της μεθόδου αυτής εστιάζει στο ρυθμό αποστολής του αρχείου που καθορίζεται από την ταχύτητα σύνδεσης. Επειδή οι σημερινές συνδέσεις προσφέρουν περιορισμένο εύρος ζώνης ο ρυθμός αποστολής πρέπει να είναι αντιστοιχά μικρός με αποτέλεσμα τη χαμηλή ποιότητα αναπαραγωγής. Η ποιότητα αυτή μειώνεται ακόμη περισσότερο όταν το δίκτυο παρουσιάζει προβλήματα ή είναι υπερφορτωμένο. Στην περίπτωση αυτή πολλά από τα πακέτα που αποστέλλον την ροή του αρχείου χάνονται και η μέθοδος δεν προβλέπει την εκ νέου αποστολή τους. Τέλος, σε αντίθεση με το Progressive, το Realtime Streaming απαιτεί νέα πρωτόκολλα και ειδικούς servers αφιερωμένους στη διαδικασία αποστολής του υλικού. Παράλληλα τα ειδικά πρωτόκολλα streaming παρουσιάζουν πολλές φορές προβλήματα με το τοίχο ασφαλείας (firewalls) [9]. Για το λόγο αυτό ορισμένοι χρήστες ενδέχομαι να μην μπορούν να παρακολουθήσουν Realtime Streaming υλικό από ορισμένους υπολογιστές.
2.3.2 Τρόποι μετάδοσης Ροής

Όπως αναφέραμε και προηγουμένως οι τρόποι μετάδοσης βίντεο είναι δύο:
α) Κατ’ απαίτηση (On –Demand)
β) Πραγματικού χρόνου (Realtime)

Στην πρώτη περίπτωση ζητάμε την αναπαραγωγή ενός ήδη καταγεγραμμένου και αποθηκευμένου βίντεο, ενώ στην δεύτερη ή καταγραφή και μετατροπή σε πολυμεσική μορφή γίνεται σε πραγματικό χρόνο (real time). Και στις δύο περιπτώσεις, η συνέχεια δεν έχει διαφορές. Η ροή του συμπιεσμένου βίντεο μετατρέπεται σε πακέτα και αποστέλλεται μέσω Διαδικτύου από τον κεντρικό υπολογιστή που αποστέλλει πολυμεσική ροή (Streaming Server). Στην πλευρά του χρήστη τα πακέτα ενώνονται και αποσυμπιέζονται για την αναπαραγωγή. Τα τρία μοντέλα streaming είναι το Μονής Εκπομπής (Unicast), Πολυεκπομπής (Multicast) και Εκπομπής (Broadcast).

2.3.2.1 Μονής Εκπομπής (Unicast)

Στο μοντέλο αυτό κάθε χρήστης που απαιτεί το υλικό συνδέεται με τον server και παραλαμβάνει ξεχωριστή ροή δεδομένων. Το μειονέκτημα είναι ότι ο φόρτος του server αυξάνει ανάλογα με τον αριθμό των χρηστών που καλείται να εξυπηρετήσει. Όταν ο αριθμός αυτός ξεπεράσει κάποιο όριο ο server υπερφορτώνεται και ουσιαστικά καταρρέει. Επίσης η αποστολή της ίδιας ροής δεδομένων σε πολλούς χρήστες ταυτόχρονα είναι αναπτελεσματική, δημιουργεί υπερφόρτωση στο δίκτυο και μειώνει την ποιότητα εξυπηρέτησης (Quality of Service). Ουσιαστικά το μοντέλο αυτό επιτρέπει την αποστολή περιεχομένου one-to-one, δηλαδή μια ροή δεδομένων για κάθε χρήστη. Αναφέρεται πολλές φορές και σαν Βίντεο
Χαρακτηριστικά και Πρότυπα Πολυμεσικών Ροών

Κατ’ Απαίτηση επειδή κάθε χρήστης μπορεί να ζητήσει οποιαδήποτε ροή σε οποιαδήποτε στιγμή[9].

Σχήμα 2. Μονής Εκπομπής Πολυμεσική Ροή

2.3.2.2. Πολυεκπομπής (Multicast)

Το μοντέλο αυτό παρέχει αρκετά πλεονεκτήματα έναντι του Unicast, που είναι εμφανή κυρίως στις ζωντανές μεταδόσεις (Live Broadcast). Στην περίπτωση αυτή είναι φυσικό ένας μεγάλος αριθμός χρηστών να απαιτήσουν τη σύνδεση και λήψη του ίδιου περιεχόμενου ταυτόχρονα. Αντί λοιπόν να γίνει παράλληλη εκπομπή της ροής σε κάθε χρήστη ξεχωριστά, ο εξυπηρετητής στέλνει μια μόνο ροή που μεταδίδεται σε μια ή περισσότερες ομαδικές διευθύνσεις. Ουσιαστικά αυτό που συμβαίνει είναι ότι μεταξύ του εξυπηρετητή και των πελατών παρεμβάλλονται δρομολογητές πολυεκπομπής (multicast routers) με τους οποίους συνδέονται οι χρήστες. Με τον τρόπο αυτό οι χρήστες ομαδοποιούνται και
κάθε ομάδα παραλαμβάνει μια μόνο ροή δεδομένων. Με το αποκεντρωμένο αυτό μοντέλο, ο εξυπηρετητής αποσυνδέεται από τους τελικούς αποδέκτες και ο φόρτος του δεν αυξάνεται με κάθε νέα σύνδεση[17].

Παρά όμως τα σαφή πλεονεκτήματα του Multicast, το μοντέλο χρησιμοποιείται μόνο όταν από ένα μικρό ποσοστό οργανισμών και εταιριών στο Διαδίκτυο λόγω των πολύπλοκων τεχνικών δυσκολιών που παρουσιάζει η εγκατάσταση ενός τέτοιου συστήματος. Εκτός από αυτό η σημαντικότερη αιτία είναι ότι η πλειονότητα του streaming περιεχομένου στο διαδίκτυο είναι αποθηκευμένο και προσφέρεται στους χρήστες ύστερα από αίτημα τους. Σε αυτές τις συνθήκες το μοντέλο αυτό δεν είναι αρκετά αποτελεσματικό, αφού οι αιτήσεις των χρηστών είναι τυχαίες και δεν μπορούν να συγκεντρωθούν σε ομαδικές διεύθυνσεις για ταυτόχρονη μετάδοση.

Σχήμα 3. Πολυεκπομπή Πολυμεσικής Ροής
2.3.2.3. Εκπομπής (Broadcast)

Το μοντέλο αυτό είναι μια ιδιαίτερη περίπτωση του Multicasting που αποστέλλει μια ροή δεδομένων σε όλους τους χρήστες. Η μέθοδος αυτή μπορεί να χρησιμοποιηθεί για ζωντανές μεταδόσεις παρουσιάσεων ή ανακοινώσεων προϊόντων σε όλους τους υπαλλήλους μιας εταιρίας παγκοσμίως. Όλοι οι χρήστες του δικτύου μπορούν να παρακολουθήσουν την εκπομπή αρκεί να συνδεθούν στη δικτυακή πλατφόρμα. Αν λοιπόν θέλετε να μην μήνυμα σε περιβάλλον γραφείου, θα το στέλνετε σε όλους τους υπάλληλους είτε αυτοί το χρειάζονται είτε όχι.

2.4 Ψηφιακό βίντεο

Το παραδοσιακό αναλογικό βίντεο στηρίζεται σε μια διαδικασία όμοια με αυτή των κινηματογραφικών ταινιών. Η ταινία βίντεο σχηματίζεται από μια σειρά διαφορετικών εικόνων που προβάλλονται στην οθόνη και λέγονται καρέ (frames)[10]. Η προσπάθεια σύγκλισης των τεχνολογιών της πληροφορικής και του βίντεο έχει πλέον που μπορούν να συνδεθούν άμεσα με τον υπολογιστή για την καταγραφή του σήματος απ’ ευθείας στον σκληρό δίσκο. Για να ενσωματώσουμε βίντεο σε μια εφαρμογή θα πρέπει να χρησιμοποιήσουμε έτσι την καταγραφή (video clips) ή να εισάγουμε αναλογικό βίντεο από εξωτερικές πηγές όπως βιντεοκάμερα, συσκευή βίντεο ή βιντεοδίσκους. Μια ειδική περίπτωση παραγωγής βίντεο μπορεί να προκύψει με ειδικά προγράμματα, τα οποία καταγράφουν σε ταινία ότι συμβαίνει σε μια περιοχή της οθόνης του υπολογιστή. Η ψηφιοποίηση της σειράς βίντεο χαρακτηρίζεται από τις εξής παραμέτρους: την συχνότητα δειγματοληψίας, την ταχύτητα των πλαισίων, το μέγεθος της εικόνας και το χρωματικό βάθος που καθορίζει την ποιότητα της εικόνας του βίντεο. Το ψηφιακό βίντεο δημιουργείται στην πράξη από μια σειρά χαρτογραφικών εικόνων.
2.5 Τεχνικές και αλγόριθμοι συμπίεσης και αποσυμπίεσης (Video codecs)

Για την συμπίεση και αποσυμπίεση βίντεο έχουν αναπτυχθεί διάφορες τεχνικές και αλγόριθμοι σε μορφή λογισμικού (software) και είναι γνωστοί σαν codecs[10]. Οι κυριότεροι codecs που χρησιμοποιούνται σήμερα είναι:

α) H.263
β) MPEG

2.5.1 Το πρότυπο συμπίεσης H.263

Ο codec αυτός αναπτύχθηκε το 1994 και αποτελεί εξέλιξη του H.261. Προορίζεται για βιντεοτηλέφωνα και διεξαγωγή τηλεδιασκέψεων μέσα από γραμμές ISDN. Κυριότερη βελτίωση έναντι του προκατόχου του είναι η υποστήριξη για ακόμα χαμηλότερα bit rates, ενώ περιλαμβάνεται και ένας μηχανισμός που επιτρέπει την καλύτερη αξιοποίηση του εύρους ζώνης (bandwidth). Ο μηχανισμός λειτουργεί ισορροπώντας μεταξύ της ποιότητας της εικόνας και της κίνησης, με αποτέλεσμα οι εικόνες που περιλαμβάνουν έντονη κίνηση να είναι χαμηλότερης ποιότητας από τις στατικές[9].
2.6 Οικογένεια MPEG

Με δεδομένη την ολοένα και αυξανόμενη χρήση της ψηφιακής τεχνολογίας, η οποία αντικαθιστά την αναλογική που παραδοσιακά χρησιμοποιείται εδώ και δεκαετίες στις τηλεπικοινωνίες, την τηλεόραση, την ηχογράφηση και αναπαραγωγή της μουσικής αλλά και σε άλλους τομείς, έχει αρχίσει παράλληλα να γίνεται έρευνα και προς την κατεύθυνση της συμπίεσης της ψηφιακής πληροφορίας, με στόχο την οικονομία εύρους φάσματος (bandwidth). Οι λόγοι για τους οποίους είναι όχι απλά χρήσιμη αλλά απαραίτητη η ανάπτυξη αυτών των τεχνικών συμπίεσης δεν είναι ίσως τόσο προφανείς, γι' αυτό ας εξετάσουμε μερικά παραδείγματα που φανερώνουν την επιτακτική ανάγκη για επέκταση της εφαρμογής της ψηφιακής συμπίεσης, τόσο στην εικόνα όσο και στον ήχο (δύο μορφές επικοινωνιών που παράγουν αυξημένο όγκο ψηφιακής πληροφορίας)[3].

Είναι φανερό ότι υπάρχει πρόβλημα τόσο μετάδοσης όσο και αποθήκευσης του ασυμπίεστου ψηφιακού σήματος βίντεο (άρα και του ήχου που το συνοδεύει, παρόλο που καταλαμβάνει πολύ λιγότερο όγκο). Μόνο στην περίπτωση του μουσικού CD το πρόβλημα αποθήκευσης έχει λυθεί και έχει δημιουργηθεί ένα standard που επιτρέπει την αποθήκευση του ήχου σε ψηφιακή ασυμπίεστη μορφή. Ακόμα και σε αυτή την περίπτωση όμως το πρόβλημα μετάδοσης του ήχου ποιότητας CD παραμένει (εδώ εννοούμε τη μετάδοση σε ευρύτερα δίκτυα όπως το Internet ή την τηλεοπτική μετάδοση μέσω δορυφόρων, όπου η ανάγκη για οικονομία bandwidth είναι δεδομένη). Άρα είναι φανερό ότι πρέπει να γίνουν προσπάθειες για τη σημαντική μείωση του όγκου της ψηφιακής πληροφορίας αλλά χωρίς να γίνουν μεγάλοι συμβιβασμοί στην ποιότητα του ήχου και της εικόνας.
2.6.1 Το πρότυπο συμπίεσης MPEG

Το όνομα MPEG έχει επικρατήσει όμως να αναφέρεται και στην οικογένεια των τυποποιήσεων (standards) που δημιουργήθηκαν από την ομάδα MPEG και χρησιμοποιούνται για τη μετάδοση οπτικών και ηχητικών δεδομένων σε ψηφιακή συμπιεσμένη μορφή. Η οικογένεια MPEG περιλαμβάνει τα πρότυπα MPEG-1, MPEG-2 και το επερχόμενο MPEG-4, MPEG-7 και MPEG-21. Πιο αναλυτικά:
• MPEG-1

Αναπτύχθηκε για την αποθήκευση και ανάκτηση κινούμενης εικόνας και ήχου σε ψηφιακά μέσα με ρυθμό μετάδοσης μέχρι 1,5 Mbits/sec. Η εικόνα έχει ανάλυση 352x240 pixels (NTSC) ή 352x288 pixels (PAL) και η ποιότητά της είναι σε επίπεδα VHS video. Χρησιμοποιείται κυρίως για την αποθήκευση video σε CD-ROM, Video-CD και CD-i και όπου αλλού χρειάζεται μικρό (σε σχέση με το MPEG-2) bandwidth. Το MPEG-1 μπορεί να χρησιμοποιηθεί σε εφαρμογές με ρυθμό μετάδοσης 4-5 Mbits/sec, αλλά τα αποτελέσματα δεν είναι τόσο καλά, όσο στην κανονική περιοχή λειτουργίας του[5].

• MPEG-2

Αναπτύχθηκε για εφαρμογή στην ψηφιακή τηλεόραση. Η βασική ανάλυση της εικόνας ακολουθεί το τηλεοπτικό πρότυπο CCIR-601 (broadcast quality - ποιότητα εκπομπής) δηλαδή 704x480 pixels (NTSC) ή 704x576 pixels (PAL) και υποστηρίζει εικόνα πλεκτής σάρωσης (interlaced). Ο ρυθμός μετάδοσης κυμαίνεται από 3 ως 10 Mbits/sec. Οι εφαρμογές του είναι στην καλωδιακή τηλεόραση (CableTV), στη δορυφορική (Direct Broadcasting Satellite TV) αλλά αναμένεται να επεκταθεί και στην επίγεια τηλεόραση. Επίσης χρησιμοποιείται στην αποθήκευση κινηματογραφικών ταινιών στα DVD (Digital Video Disk)[5].
Πτυχιακή εργασία της Μακρή Σταματικής

- MPEG-4

Coding of audio-visual objects. Ο όρος audio visual objects (AV-objects) είναι γενικός και σημαίνει διάφορες οντότητες που απαρτίζουν την εικόνα και οι οποίες μπορούν κωδικοποιητής και αποκωδικοποιητής να χειρισθούν αυτόνομα και ανεξάρτητα από τις υπόλοιπες. Με τον όρο οντότητες πάλι εννοούμε σχήματα και ήχους, φυσικούς ή computer generated (παραγόμενος υπολογιστής) που χρησιμοποιούνται για να αναπαραστήσουν άλλα ομοιότητα αντικείμενα. Είναι ένα standard για εφαρμογές επικοινωνίας πολυμέσων (multimedia communications) δηλαδή εφαρμογές όπως βιντεοτηλεφωνία (video-phone), τηλεσυνδιάσκεψη (video-conference), βίντεο μέσω ηλεκτρονικού ταχυδρομείου (video e-mail), ηλεκτρονικά νέα (electronic news) και πολλές άλλες. Η ανάλυση της εικόνας είναι 176x144 pixels σε σχετικά χαμηλούς ρυθμούς μετάδοσης που κυμαίνονται ανάμεσα στα 4.8 και 64 Kbits/sec, κατάλληλη δηλαδή για μετάδοση σε δίκτυα με μικρό διαθέσιμο bandwidth ανά συνδρομητή, όπως το Διαδίκτυο[5].

- MPEG-7

Το πρότυπο αυτό χρησιμοποιείται για την περιγραφή πολυμεσικών δεδομένων σε όσο πιο ευρεία γκάμα εφαρμογών γίνεται. Υποστηρίζει ως ένα βαθμό την μετάφραση της έννοιας της πληροφορίας. Ωρίζει μόνο τον τρόπο που περιγράφονται τα πολυμεσικά δεδομένα και όχι τις μεθόδους ανάλυσης που προηγούνται για την εξαγωγή των χαρακτηριστικών ή τις μηχανές αναζήτησης που έπονται για την χρήση αυτών[5].
• MPEG-21

Το πρότυπο αυτό χρησιμοποιείται για τον ορισμό της απαραίτητης τεχνολογίας για την υποστήριξη ανταλλαγής πρόσβασης κατανάλωσης και γενικότερα διαχείρισης ψηφιακών στοιχείων με τρόπο αποτελεσματικό, διάφανο και διαλειτουργικό πάνω από ετερογενή δίκτυα και με χρήση διαφορετικών τεχνικών συσκευών [5].

Να σημειωθεί ότι οι αναλύσεις (resolution) της εικόνας που αναφέρθηκαν παραπάνω δεν είναι περιοριστικές αλλά αναφέρονται στους περιορισμούς που έχουν τεθεί για να κρατηθούν σε λογικά επίπεδα η πολυπλοκότητα των κωδικοποιητών και αποκωδικοποιητών και ο όγκος δεδομένων. Ο περιορισμός αυτός ονομάζεται CPB (Constrained Parameters Bitstream) και ορίζει τις διαστάσεις που πρέπει να έχουν τα MPEG σήματα, κάτι σαν ένα standard format. Παράλα αυτά μπορεί να γίνει κωδικοποίηση και σε υψηλότερες αναλύσεις απλώς δεν υπάρχει εγγύηση ότι θα μπορούν να χρησιμοποιηθούν με όλους τους διαθέσιμους αποκωδικοποιητές, ας έχει αυτό ακόλουθον τους κανόνες του MPEG. Ετσι το MPEG-2 π.χ. μπορεί να φτάσει ανάλυση (resolution) 1920x1080 και το MPEG-1 4095x4095. Επίσης το γεγονός ότι τα σήματα MPEG εμφανίζονται σε δύο διαφορετικές αναλύσεις (διαστάσεις) εικόνας οφείλεται στην ύπαρξη δύο συστημάτων για το αναλογικό σήμα, τα PAL και NTSC, με δειγματοληψία των οποίων προκύπτουν τα σήματα MPEG[1]. Ακόμα δεν έχει γίνει σημαντική πρόοδος στην κατεύθυνση της δημιουργίας πηγών (κάμερες κτλ.) που θα παράγουν σήμα MPEG απευθείας.
Πτυχιακή εργασία της Μακρή Σταματικής

Ενδιάμεσα υπήρξε και το MPEG-3 το οποίο ήταν προσανατολισμένο στην τεχνολογία της Τηλεόρασης Υψηλής Ευκρίνειας (HDTV - High Definition TV) αλλά εγκαταλείφθηκε αφού διαπιστώθηκε ότι το MPEG-2 μπορεί με κάποιες αλλαγές στη σύνταξη των προδιαγραφών να χρησιμοποιηθεί το ίδιο καλά στη HDTV. Έτσι η δουλειά που είχε γίνει πάνω στο MPEG-3 ενσωματώθηκε στο MPEG-2.

2.7 Χρήση του βίντεο στην καθημερινή μας ζωή

2.7.1 Τηλεδιάσκεψη

Η τηλεδιάσκεψη (multimedia conferencing) αποτελεί μια κύρια άποψη των συστημάτων συνεργασίας και συχνά θεωρείται ως η πιο διαδεδομένη εφαρμογή στην τεχνολογία των πολυμέσων. Η χρήση της επεκτείνεται σε πολλούς τομείς της επαγγελματικής δραστηριότητας κάνοντάς την ένα πανίσχυρο μέσο επικοινωνίας για τις σύγχρονες επιχειρήσεις, αφού εξαλείφει τους χρονικούς και γεωγραφικούς περιορισμούς επιτρέποντας αποτελεσματικότερη συνεργασία μεταξύ των εργαζομένων τους και των πελατών. Το όλο εγχείρημα χαρακτηρίζεται από την ιδέα της αλληλεπιδραστικής συνεργασίας σε πραγματικό χρόνο με την διαμοίραση οθόνων και πινάκων, την δυνατότητα video-διάσκεψης και την ύπαρξη επικοινωνίας πολλαπλών κατευθύνσεων [19].

Σύμφωνα με τα παραπάνω τα συστήματα τηλεδιάσκεψης μπορούν να χωριστούν σε δύο κατηγορίες, τα σημείο-προς-σημείο (point-to-point) και τα πολλαπλών σημείων (multipoint). Η σημείο-προς-σημείο τηλεδιάσκεψη περιλαμβάνει την συνδιάσκεψη με αλληλεπίδραση είτε δύο ατόμων διαμέσου των προσωπικών τους υπολογιστών (PCs), είτε δύο ομάδων βρισκόμενων σε εγκαταστάσεις (χώρους) που υποστηρίζουν πολυμεσική επικοινωνία. Η πολλαπλών σημείων τηλεδιάσκεψη ενώνει τρεις ή
περισσότερες τοποθεσίες που μπορεί να είναι απλοί προσωπικοί υπολογιστές, υπολογιστές δικτύων LAN ή χώροι πολυμεσικής συνδιάσκεψης στα πλαίσια εργασιών που απαιτούν ευρύτερα επιχειρησιακά συστήματα και είναι επίσης γνωστή ως ομαδική τηλεδιάσκεψη (group conferencing).

Σε οποιαδήποτε περίπτωση η πρόκληση εντοπίζεται στη παροχή σύνδεσης αλληλεπίδρασης πραγματικού χρόνου για όλα τα επίπεδα, ανάμεσα δηλαδή σε μεμονωμένα άτομα, ομάδες στα όρια ενός και μόνο LAN ή ολόκληρες εταιρίες που επικοινωνούν διαμέσου διαφορετικών δικτύων. Εμπόδιο για την ανάπτυξη μέχρι τώρα υπήρξε η έλλειψη επαρκούς εύρους ζώνης στα υπάρχον δίκτυα και η σχετική σπανιότητα ανοιχτού από όποια πρωτοκόλλο δικτύων (servers, routers, hubs κτλ). Παρακάτω, ακολουθούν διάφορες χαρακτηριστικές εφαρμογές της τηλεδιάσκεψης.

2.7.2 Video-τηλεφωνία

Η video-τηλεφωνία είναι κατά βάση μία αμφίδρομη βίντεο επικοινωνία σε επίπεδο καταναλωτή που κάνει χρήση των υπαρχόντων τηλεφωνικών και δικτυακών τεχνολογιών. Είναι αυστηρά point-to-point ή αλλιώς από άτομο σε άτομο σύστημα και χρησιμοποιεί μια μικρή σχετικά οθόνη και χαμηλό ρυθμό πλαισίων εικόνας, από 2 έως 10 πλαισία το δευτερόλεπτο (fps). Αν και χαμηλά πρωτόγονα και ακατάλληλα τα συστήματα αυτά για χρήση στα περισσότερα ευρύτερα επιχειρησιακά περιβάλλοντα προήγαγαν στο κοινό την έννοια της video-διάσκεψης, η video-τηλεφωνία μπορεί να θεωρηθεί πρόδρομο[18]. Ένα video-τηλέφωνο απαρτίζεται από μία συσκευή τηλεφωνίου, μία μικρή video-κάμερα και οθόνη χειριζόμενη από συμπιεστικά/αποσυμπιεστικά μικροτσίπ (codecs), αν και δεν έχει την γενική επεξεργαστική ικανότητα
πτυχιακή έργασία της Μακρή Σταματικής

ενός PC. Συνδέεται σε μία συνηθισμένη υποδοχή τηλεφώνου και χρησιμοποιεί 3.3 ιντσών έγχρωμη video-οθόνη υγρών κρυστάλλων (LCD) με τον προαναφερθέντα ρυθμό πλαισίων εικόνας. Αυτό έχει ως αποτέλεσμα οι εικόνες να έχουν κακή σχετική ποιότητα και το περιορισμένο εύρος ζώνης των τηλεφωνικών δικτύων να μην επιτρέπει την βελτίωσή τους. Συνήθως υπάρχει πλήκτρο ελέγχου της μετάδοσης video με το οποίο μπορεί να ακυρώνεται η μετάδοση της εικόνας. Η video-κάμερα έχει την δυνατότητα εστίασης μέχρι 2,74 μ. από την κονσόλα για την υποστήριξη περισσότερων του ενός συνομιλητών.

Ιστορικά πρέπει να τονίσουμε ότι η πρώτη εμφάνιση της video-τηλεφωνίας έγινε μόλις το 1964 με το πρωτότυπο Picture Phone από την AT&T, αλλά ενώ το αγοραστικό κοινό πάντα γοητευόταν από την ιδέα, τα πολλά τεχνολογικά μειονεκτήματά της δεν επέτρεψαν την καθιέρωσή της. Χαρακτηριστικό είναι το ότι έπρεπε να περάσουν αρκετά χρόνια μέχρι να κυκλοφορήσει στην αγορά προϊόν μαζικής παραγωγής (Video Phone 2500 στα 1992 πάλι από την AT&T). Πάντως υπάρχει η αισιοδοξία ότι με την ανάπτυξη της δικτυακής τεχνολογίας και την αύξηση του παρερχόμενου εύρους ζώνης θα λυθούν τα προβλήματα απόδοσης και θα γίνει ευρέως αποδεκτό ως μέσο επικοινωνιών.

2.7.3 Τηλεδιάσκεψη γραφείου

Αυτή η μορφή τηλεδιάσκεψης (desktop-to-desktop conferencing) εμπεριέχει μόνο δύο χρήστες ή δύο μικρές ομάδες χρηστών που συγκεντρώνονται γύρω από μία μεμονωμένη πλατφόρμα PC και επικοινωνούν διαμέσου υπαρχόντων δικτύων με ένα άλλο PC κατάλληλα εξοπλισμένο να λαμβάνει τις μεταδόσεις του πρώτου. Η έννοια αυτή συνδυάζει την video-τηλεφωνία, την video-διάσκεψη και PCs ή σταθμούς εργασίας με πολυ- χρηστικά (multi-user) λειτουργικά συστήματα. Τα βίντεο, η φωνή και τα δεδομένα μεταδίδονται και εμφανίζονται σε
Χαρακτηριστικά και Πρότυπα Πολυμεσικών Ροών

Συγκεκριμένα παράθυρα όπως θα γινόταν αν αυτοί που συνδιασκέπτονται βρισκόταν δίπλα-δίπλα στον ίδιο φυσικό χώρο [20]. Τέτοια συστήματα τηλεδιάσκεψης ενδέχεται να έχουν video-κάμερες για την μεταβίβαση εικόνων πραγματικού χρόνου των συμμετεχόντων και πολύ συχνά στηρίζονται κυρίως στην φωνητική αλληλεπίδραση για συνέχεια. Λόγω των ακουστικών καμποτής και της διαφορικής χροιάς της κάθε πραγματικού χρόνου μετάδοσης θεωρούνται ανώτερα από το φωνητικό ταχυδρομείο (voicemail). Στην τηλεδιάσκεψη γραφείου διαμοιράζονται εικόνες σκίτσων ή σχεδίων και κείμενα ή εικόνες εγγράφων, τα οποία βλέπουν συγχρόνως όλοι οι συμμετέχοντες. Συνηθίζεται η χρήση δεικτών από απόσταση (remote pointers) που επιτρέπουν σε κάθε πλευρά να επιλέγει οπτικές λεπτομέρειες για διευκρίνιση ή αναφορά. Εφαρμογές «πίνακα-κιμωλίας» δίνουν την δυνατότητα για εμφάνιση απλών σχεδίων που έγιναν με εργαλεία ή/και σαφήνεια του μηνυτή και η οθόνη επαφής (touch screen). Ανάλογα με τις συσκευές εισόδου εικόνες μπορούν να σαρωθούν από έγγραφα, αρχεία bitmap από βάσεις δεδομένων και σημειώσεις που έγιναν κατά τη διάσκεψη. Παράδειγμα τέτοιου συστήματος είναι το Person-to-Person (P2P) της IBM.

2.7.4 Τηλεδιάσκεψη πολυμεσικών εγκαταστάσεων

Η τηλεδιάσκεψη πολυμεσικών εγκαταστάσεων (conference facility-to-conference facility conferencing) είναι μία πιο πολύπλοκη και εξελιγμένη έννοια που έχει τις ρίζες της στις αρχικές ιδέες της video-διάσκεψης. Σε αυτόν τον τύπο τηλεδιάσκεψης ομάδες ατόμων συγκέντρωνται σε ένα συγκεκριμένο χώρο κατάλληλα εξοπλισμένο ώστε να λειτουργεί ως κέντρο μετάδοσης και λήψης εκπομπών. Μία παραλλαγή περιλαμβάνει ένα κινητό σύστημα video-διάσκεψης το οποίο μεταφέρεται σε συμβατικές αίθουσες συνδιάσκεψης όπου συνδέεται δικτυακά διαμέσου modem και μπορεί να επικοινωνήσει με μία παρόμοια σταθερή ή κινητή μονάδα.
Τέτοιοι τύποι πολυμεσικές εγκαταστάσεις πολυδιάσκεψης στηρίζονται σε συσκευές video-συμπίεσης και αποσυμπίεσης (codecs) που επιτρέπουν αμφίδρομη, πλήρους-κίνησης, έγχρωμη video-διάσκεψη σε επιλεγμένο εύρος ζώνης που κυμαίνεται από 56 Kilobits ανά δευτερόλεπτο (Kbps) μέχρι 2.048 Megabits ανά δευτερόλεπτο (Mbps) και δίνουν την δυνατότητα στους χρήστες να μεταδίδουν πολυμεσικά δεδομένα (video, ήχο, απλά δεδομένα και εικόνες γραφικών) διαμέσου ενός μεμονωμένου ψηφιακού διαύλου. Ένας από/συμπιεστής είναι απαραίτητος σε κάθε εγκατάσταση και η αναμετάδοση γίνεται διαμέσου χερσαίων, δορυφορικών, μικροκυματικών ή καλωδιακών δικτύων[21]. Τα συστήματα αυτά διαθέτουν εκτεταμένα διαγνωστικά εργαλεία που αναγνωρίζουν βλάβες συστήματος σε επίπεδο κυκλώματος (printed-circuit-board ή PCB) από οποιοδήποτε σημείο του δικτύου. Επιπρόσθετα, για ασφάλεια παρέχουν υπηρεσίες κρυπτογράφησης με κλειδιά (keys) της επιλογής του χρήστη. Αρκετές μεγάλες εταιρίες κυκλοφορούν εξοπλισμό εγκαταστάσεων που σε συνδυασμό με τον κατάλληλο αποσυμπιεστή μπορούν να αποτελέσουν μια ολοκληρωμένη λύση ανάλογα με τις εκάστοτε απαιτήσεις του πελάτη.

2.7.5 Τηλεδιάσκεψη πολλαπλών σημείων

Σε ένα σύστημα τηλεδιάσκεψης πολλαπλών σημείων (multipoint conferencing) άτομα σε τρεις ή περισσότερες διαφορετικές τοποθεσίες αλληλεπιδρούν μεταξύ τους και έχουν τη δυνατότητα να βλέπουν και να ακούν ανά πάσα στιγμή την τοποθεσία που εκπέμπει. Αυτός ο έλεγχος είναι είτε φωνητικά ενεργοποιήσιμος (voice-activated) είτε γίνεται μέσω συγκεκριμένων εντολών, ενώ πρέπει ακόμα να δίνεται η δυνατότητα της μετάδοσης από οποιοδήποτε τοποθεσία, διαφορετικής από αυτήν που έχει τον λόγο, εγγράφων, εικόνων, σχεδίων και ταινιών video. Επίσης οι εκπομπές αυτές πρέπει να είναι τέτοιες ώστε να επιδεχούνται επιζευγγία, σχολιασμό και αλλαγές κατά την διάρκεια της διάσκεψης.
Χαρακτηριστικά και Πρότυπα Πολυμεσικών Ροών

Σε αυτά τα συστήματα οι στατικές εικόνες μπορεί να μεταδίδονται με μεγαλύτερη ανάλυση (ευκρίνεια) από το video για λεπτομερέστερη επιθεώρηση. Ακόμη τα data ports πρέπει να υποστηρίζουν την μετάδοση δεδομένων κατά απαίτηση από συσκευές όπως υπολογιστές βάσεων δεδομένων, φαξ και φορητές video-κάμερες σε μεγάλες ταχύτητες. Πέρα από την τεχνολογία συμπίεσης που απαιτείται για τέτοιου είδους μετάδοση υπάρχει η ανάγκη για ένα μέσο που θα καθιστά δυνατή την πολλαπλή επικοινωνία με την υπάρχουσα point-to-point υποδομή. Μια αρχική προσέγγιση είναι ο χειρωνακτικός έλεγχος από μία κεντρική τοποθεσία της κυκλοφορίας των μεταδόσεων, που όπως είναι λογικό χαρακτηρίζεται μη αποδοτική και πρακτική[18].

Η εμφάνιση των Μονάδων Ελέγχου Πολλαπλών Σημείων (multipoint control unit - MCU) έδωσε νέα πνοή στην τηλεδιάσκεψη, αφού όλες οι λειτουργίες δρομολόγησης γίνονται αυτόματα, ενώ η σύνδεση των συσκευών αυτών στο δίκτυο μπορεί να γίνει οποιοδήποτε στιγμή.
ΚΕΦΑΛΑΙΟ 3: ΠΡΟΒΛΗΜΑΤΑ ΠΟΛΥΜΕΣΙΚΩΝ ΕΦΑΡΜΟΓΩΝ

3.1 Καθυστέρηση απ’ άκρου εις άκρο

Η καθυστέρηση απ’ άκρου εις άκρο εισάγεται στο δίκτυο ακόμα και κατά την διαδικασία κωδικοποίησης/αποκωδικοποίησης και διαμόρφωσης πακέτων. Η καθυστέρηση δικτύου εκφράζεται από το άθροισμα των καθυστερήσεων διαστοράς και μετάδοσης, καθώς και από τις μεταβλητές καθυστερήσεις αυράς αναμονής και επεξεργασίας στους ενδιάμεσους δρομολογητές κατά το μήκος της διαδρομής. Στον Πίνακα 1 φαίνονται οι ενδεικτικές κατευθυντήριες για την καθυστέρηση ροής εικόνας. Οι απ’ άκρου εις άκρο καθυστερήσεις οι οποίες ξεπερνούν τα 150 ms επηρεάζουν την έγκαιρη διανομή δεδομένων και έχουν αρνητική επίδραση στην ποιότητα της εικόνας. Γενικά, οι αυξημένες καθυστερήσεις είναι δυνατόν να προκαλέσουν μη διαθεσιμότητα δεδομένων και ακατάληπτη αλληλεπίδραση σε πραγματικό χρόνο με απογοητευτικές συνέπειες για τον χρήστη της εφαρμογής.

<table>
<thead>
<tr>
<th>Καθυστέρηση</th>
<th>Επίπτωση στην αντιληπτή ποιότητα</th>
</tr>
</thead>
<tbody>
<tr>
<td>Λιγότερο από 150 ms</td>
<td>Η καθυστέρηση δεν παρατηρείται</td>
</tr>
<tr>
<td>150 – 250 ms</td>
<td>Αποδεκτή ποιότητα με ανεπαίσθητες οπτικές παραμορφώσεις</td>
</tr>
<tr>
<td>Πάνω από 250 – 300 ms</td>
<td>Η ποιότητα της εικόνας υποβαθμίζεται</td>
</tr>
</tbody>
</table>

Πίνακας 1. Συνήθεις κατευθυντήριες καθυστέρησης για ροή εικόνας
3.1.1 Απόκλιση Καθυστέρησης

Η απόκλιση καθυστέρησης προκαλείται συνήθως από τις μεταβλητές καθυστερήσεις ουράς αναμονής και επεξεργασίας στους δρομολογητές σε περιόδους αυξημένης κίνησης και μερικές φορές λόγω αλλαγής δρομολόγησης. Η απόκλιση καθυστέρησης ευθύνεται για το φαινόμενο που αποκαλείται jitter δικτύου. Γενικά, το jitter έχει δυσάρεστες επιπτώσεις σε μια εφαρμογή πολυμέσων, καθώς τα πακέτα συχνά φτάνουν τον παραλήπτη αργότερα από ότι απαιτείται. Επιπροσθέτως, η απόκλιση καθυστέρησης είναι δυνατόν να συντελέσει σε ανακολουθία της παρουσίασης πολυμέσων, για παράδειγμα με παγωμένα καρέ εικόνας.

Η χρήση προσωρινής αποθήκευσης είναι δυνατόν να εξαλείψει τις επιπτώσεις της απόκλισης καθυστέρησης με το να εξομαλύνει το τρέμουλο. Στην περίπτωση αυτή, επισύρεται μια πρόσθετη καθυστέρηση στην παρουσίαση πολυμέσων. Παρόλα αυτά, η προσωρινή αποθήκευση παρουσιάζει συγκεκριμένους περιορισμούς, όπως η ανεκτικότητα καθυστέρησης της εφαρμογής και οι περιορισμοί στην μνήμη προσωρινής αποθήκευσης.

3.1.2 Επίδραση της Καθυστέρησης

Η καθυστέρηση εισάγεται σε όλα τα στάδια ενός συστήματος αποστολής βίντεο: από την συσκευή σύλληψης του βίντεο, τα αρθρώματα κωδικοποίησης και δεσμιδοποίησης, την καθυστέρηση εκπομπής δικτύου, την λήψη προσωρινής αποθήκευσης, την αποκωδικοποίηση και αναπαραγωγή του σήματος. Παρόλα αυτά, ο χρήστης δεν ενδιαφέρεται που εισάγεται η λανθάνουσα περίοδος. Η απαίτηση του χρήστη είναι να υπάρχει μικρή λανθάνουσα περίοδος ώστε να βιώνει ένα συναίσθημα πραγματικής αλληλεπίδρασης στην διαπροσωπική επικοινωνία. Η καθυστέρηση επηρεάζει κυρίως την πιστότητα του βίντεο παρά την λαμβανόμενη πιστότητα φωνής. Υπάρχει μια ευρύτητα απόψεων σχετικά
με το κατάλληλο εύρος της μονομερούς καθυστέρησης. Σύμφωνα με την ITU, οι χρήστες δεν μπορούν να προσέξουν καμία καθυστέρηση κάτω από 100-150 ms. Καθυστέρηση μεταξύ 150 και 300 ms εκλαμβάνεται σαν μικρός δισταγμός στην απόκριση της αναπαραγωγής. Η καθυστέρηση πάνω από 300 ms είναι προφανής στους χρήστες. Η αναπαραγωγή είναι ενδεχομένως σχεδόν αδύνατη, καθώς ο κάθε ομιλητής αποσύρεται όλο και περισσότερο προκειμένου να εμποδίσει τις διακοπές. Ο Vegesna συνιστά ως στόχο τα 100 ms στην μονομερή απ' άκρο εις άκρο καθυστέρηση ώστε να διατηρείται η αλληλεπιδραστική φύση της επικοινωνίας, ενώ ο Kumar επιχειρηματολογεί πάνω στο ότι μονομερής καθυστέρηση κάτω των 300 ms είναι επιθυμητή, ώστε να διατηρηθεί αναπαραγωγή βίντεο πλήρους εκπομπής-λήψης.

3.2 Απώλεια πακέτων

Η απώλεια πακέτων είναι συνήθως αποτέλεσμα εκτεταμένης συμφόρησης του δικτύου, αν και σε ιδιαίτερες καταστάσεις χάνονται πακέτα εξαιτίας βλάβης του υλικού. Ένα σημαντικό θέμα το οποίο αφορά την συμφόρηση, είναι ότι δεν μπορούμε να προβλέψουμε πότε θα λάβει χώρα. Παρόλα αυτά, όταν προκύψει συμφόρηση, το στρώμα μεταφοράς παρέχει τέτοιου είδους πληροφορίες, ενδεικτικές για την κατάσταση του δικτύου. Επομένως, στις περισσότερες περιπτώσεις, ο έλεγχος συμφόρησης είναι πιο ευκολός από ότι η αποφυγή συμφόρησης. Γενικά, η απώλεια ενός πακέτου υποδεικνύει συμφόρηση και το TCP εξετάζει άμεσα έλεγχο συμφόρησης προκειμένου να αποφευχθεί κατάρρευση λόγω συμφόρησης. Με την εφαρμογή συγκεκριμένων πολιτικών απόσυρσης, το παράθυρο συμφόρησης (και συνεπώς, ο ρυθμός μετάδοσης) μειώνεται ανάλογα με τους μηχανισμούς τους οποίους ενσωματώνει το TCP. Εχει προταθεί μια σειρά μηχανισμών για τον έλεγχο συμφόρησης,
συμπεριλαμβανομένων της Αποφυγής Συμφόρησης, Σταδιακής Εκκίνησης, Ταχείας Αναμετάδοσης και Ταχείας Ανάκτησης (Congestion Avoidance, Slow Start, Fast Retransmit, Fast Recovery).

Αν η διαδρομή δικτύου συμπεριλαμβάνει ασύρματες συνδέσεις, μπορούμε μόλις και μετά βίας να είμαστε βέβαιοι για την αιτία της απώλειας πακέτων. Σε ετερογενή ενσύρματα/ασύρματα περιβάλλοντα, εκτός της συμφόρησης, τα hand-off και τα φθίνοντα κανάλια συχνά συντελούν στην απώλεια πακέτων. Το TCP δεν είναι ικανό να ανιχνεύσει επιτυχώς την φύση των σφαλμάτων σε ένα τέτοιο δικτυακό περιβάλλον. Ως αποτέλεσμα, το TCP δεν χρησιμοποιεί την κατάλληλη στρατηγική ανάκτησης σφαλμάτων με αρνητικό αντίκτυπο στην απόδοση της εφαρμογής πολυμέσων[7].

Το ίδιο το ποσοστό της απώλειας πακέτων δεν επαρκεί πάντα στην εκτίμηση του αντίκτυπου που έχει πάνω σε μια εφαρμογή πολυμέσων. Μια σημαντική παράμετρος η οποία θα πρέπει να ληφθεί υπόψη είναι το μοτίβο απώλειας (ή περίοδος απώλειας). Στο Διαδίκτυο, τα μοτίβα απώλειας έχουν εκρηκτικό χαρακτήρα, καθώς οι απώλειες συχνά εμφανίζονται υπό την μορφή μικρών ξεσπασμάτων. Ανάλογα με το μοτίβο απώλειας, η απώλεια πακέτων είναι δυνατόν να προκαλέσει απλές παραμορφώσεις ή να επηρεάσει την ποιότητα της εφαρμογής πολυμέσων σε ένα ευρύτερο επίπεδο. Μπορεί επίσης να προκύψουν μεμονωμένες απώλειες, οι οποίες δεν είναι δυνατόν να σχηματοποιηθούν σε κάποιο συγκεκριμένο μοτίβο απώλειας. Η απόδοση μιας εφαρμογής πολυμέσων επηρεάζεται επίσης από την τεχνική κωδικοποίησης που χρησιμοποιείται ή από τον τύπο των μεταδιδόμενων δεδομένων, σε συνδυασμό με το μοτίβο απώλειας.
3.2.1 Επίδραση της Απώλειας Πακέτων

Η μελέτη για τον αντίκτυπο που έχει η απώλεια δεδομένων στην αντιληπτή ποιότητα είναι μάλλον δύσκολη καθώς βασίζεται σε πολλούς παράγοντες: τον κώδικα βίντεο που χρησιμοποιείται, την ύπαρξη μηχανισμών προστασίας ή διόρθωσης σφαλμάτων, αλλά και το ίδιο το μοτίβο απώλειας πακέτων. Για παράδειγμα, το γεγονός της απώλειας πακέτων, όπου τα πακέτα χάνονται μεμονωμένα, είναι καλύτερα από ότι όταν η απώλεια συμβαίνει σε ριπές με μεγαλύτερες διάρκειες. Αυτό συμβαίνει διότι οι τεχνικές επιδιόρθωσης είναι όντως δυνατόν να εφαρμοστούν για την επανάκτηση χαμένων πακέτων, κάτι ο οποίος είναι όμως δύσκολο να γίνει από μία μακρά σειρά συνεχόμενης απώλειας πακέτων. Επιπροσθέτως, η θέση της απώλειας εντός της ροής των ψηφίων έχει σοβαρές επιπτώσεις στην αντιληπτή ποιότητα. Η απώλεια ενός πακέτου έχει μικρό αντίκτυπο στην αντιληπτή ποιότητα, ενώ δεν ισχύει από μία μακρά σειρά συνεχόμενης απώλειας πακέτων. Η απώλεια ενός πακέτου μπορεί να εφαρμοστεί για την επανάκτηση χαμένων πακέτων, κάτι το οποίο είναι όμως δύσκολο να γίνει από μία μακρά σειρά συνεχόμενης απώλειας πακέτων. Επιπροσθέτως, η θέση της απώλειας εντός της ροής των ψηφίων έχει σοβαρές επιπτώσεις στην αντιληπτή ποιότητα. Η απώλεια ενός πακέτου έχει μικρό αντίκτυπο στην αντιληπτή ποιότητα, ενώ δεν ισχύει το ίδιο στη σειρά συνεχόμενης απώλειας πακέτων [7]. Η επίπτωση της απώλειας πακέτων εξαρτάται επίσης από το μέγεθος του πακέτου. Όταν χρησιμοποιούνται μικρά πακέτα, ο αντίκτυπος ενός χαμένου πακέτου μπορεί εύκολα να ελαττωθεί με την χρήση μικρών τεχνικών συγκάλυψης σφαλμάτων στον παραλήπτη. Παρόλα αυτά, τούτο είναι δυσκολότερο να επιτευχθεί όταν επιμετάδοση μεγάλων πακέτων [7]. Η ανθεκτικότητα στην απώλεια πακέτων μπορεί επίσης να αυξηθεί με την χρήση τεχνικών διόρθωσης και συγκάλυψης σφαλμάτων, ως παρενέργεια όμως, οι τεχνικές αυτές αυξάνουν την απόκλιση καθυστέρησης.

3.3 Τι είναι η Απόκλιση Καθυστέρησης (Jitter).

Η απόκλιση καθυστέρησης είναι μια παραλλαγή ή μια εξάρθρωση στούς σφυγμούς μιας ψηφιακής μετάδοσης μπορεί να θεωρηθεί, με έναν τρόπο, ως ανώμαλες συγκώματα. Η απόκλιση μπορεί να αναφέρεται μέσω των παραλλαγών στο εύρος, να επισημάνεται τη δύναμη, και άλλα στοιχεία
τέτοιων κυμάτων. Οι συνηθισμένες αιτίες περιλαμβάνουν τα διαλείμματα σύνδεσης, τις χρονικές καθυστερήσεις σύνδεσης, την κυκλοφοριακή συμφόρηση στοιχείων, και την παρέμβαση. Απλά τεθειμένο, αυτό το jitter είναι μια ανεπιθύμητη παραγωγή των ρωγμών και των διακοπτών συστημάτων.

Για να καταλάβει την απόκλιση καθυστέρησης, κάποιος πρέπει να θυμηθεί ότι το στοιχείο (είτε ήχος, βίντεο, εικόνες είτε κείμενο) στέλνεται σπάνια πλήρως. Το στοιχείο είναι χωρισμένο στα εύχρηστα "πακέτα" με τις επιγραφές και τις υποσημειώσεις που δείχνουν τη σωστή διαταγή των πακέτων στοιχείων όταν είναι η στροφή του υπολογιστή πελατών για να τα οργανώσει για την αναπαραγωγή ήχου. Όταν εμφανίζεται η απόκλιση καθυστέρησης, μερικά πακέτα στοιχείων μπορούν να χαθούν κατά τη μεταφορά[2].

Κατά συνέπεια όταν οι εμφανίζονται αυτά τα φαινόμενα, τα όργανα ελέγχου υπολογιστών και οι επεξεργαστές υπολογιστών μπορούν να δυσλειτουργήσουν, τα αρχεία μπορούν να χαθούν, τα ακουστικά αρχεία μπορούν να αποκτήσουν το θόρυβο, τα τηλεφωνήματα διακομιμένα, τα αρχεία μπορούν να παρθούν διακομιμένα. Λόγω της ανεπιθύμητης συνέπειας του, η απόκλιση καθυστέρησης είναι μια σημαντική εκτίμηση στο σχέδιο όλων των συνδέσεων επικοινωνιών.

3.3.1 Επίδραση της Απόκλισης Καθυστέρησης

To jitter είναι το αποτέλεσμα απόκλισης των χρόνων άφιξης μεταξύ των πακέτων. Η προσωρινή αποθήκευση μπορεί να χρησιμοποιηθεί για να ελαττώσει την επίδραση του jitter. Τα εισερχόμενα πακέτα δηλαδή, αποθηκεύονται προσωρινά και κατόπιν διαβάζονται με ονομαστικό ρυθμό. Τα μεγέθη της προσωρινής αποθήκευσης για το jitter προσαρμόζονται συνήθως σε στιγμιαίες συνθήκες jitter του δικτύου.
Παρόλα αυτά, τα πακέτα τα οποία φθάνουν πολύ αργά, είτε απορρίπτονται και θεωρούνται χαμένα (προκαλώντας έτσι κενά στην αναπαραγωγή του βίντεο), είτε εμποδίζουν την σωστή ανασυγκρότηση των πακέτων βίντεο (προκαλώντας μια μη σωστή αναπαραγωγή βίντεο στην οποία τα απεσταλμένα μέρη μπορεί να μπερδεύονται μεταξύ τους).

Προβλήματα και αιτίες

Το κλειδί για την κατανόηση jitter βρίσκεται σε μια μεμονωμένη λέξη: ακρίβεια. Όπως έχει σημειωθεί ανωτέρω, οι ψηφιακές πληροφορίες στέλνονται στα πακέτα: ολόκληρο το σήμα χωρίζεται σε χοντρά κομμάτια του στοιχείου που διαβιβάζεται σε μια λαμβάνουσα μονάδα για τη συνέλευση. Εάν εμφανίζεται η απόκλιση καθυστέρησης, ο συγχρονισμός γίνεται ένα πρόβλημα και η λαμβάνουσα μονάδα το βρίσκει δύσκολο να συγκεντρώσει σωστά το εισερχόμενο ρεύμα στοιχείων. Το Jitter μπορεί να εμφανιστεί κατά τη μεταφορά (δεδομένου ότι τα πακέτα στοιχείων ταξιδεύουν μέσω του δικτυού στον υπολογιστή πελατών) ή η ίδια στη λαμβάνουσα συσκευή.

Το ταξίδι των ψηφιακών πληροφοριών (είτε ολοκληρωμένος μέσω των καλωδίων είτε της ασύρματης μετάδοσης EM) παρακωλύεται από την ποικιλία των ηλεκτρονικών ή μηχανικών ελαττώματων που μπορούν να έχουν επιπτώσεις στο διαβιβασθέν σήμα. Στις επικοινωνίες Διαδικτύου, παραδείγματος χάριν, τα ρεύματα στοιχείων μπορούν να επηρεαστούν αρνητικά από τα κύματα δύναμης, τη συμφόρηση εύρους ζώνης, τους τυχαία εμφανιζόμενους σφυγμούς EM στη φύση, και άλλα τέτοια γεγονότα.

3.3.2 Πρόληψη και διόρθωση του Jitter

Για να ελαχιστοποιήσει τις δυσμενείς επιδράσεις του jitter το αρχείο μεταφορτώνει, υιοθετείται συνήθως "ο καταχωρητής". Ο καταχωρητής χρησιμεύει ως τη περιοχή αποθήκευσης στο σύστημα όπου τα εισερχόμενα
Προβλήματα Πολυμεσικών Εφαρμογών

πακέτα για ψηφιακώς ακουστικός ή τηλεοπτικός τακτοποιούνται προτού να παίξουν πίσω - στον υπολογιστή δίνεται ο χρόνος που απαιτείται για να εξασφαλίσει ότι τα εισερχόμενα πακέτα στοιχείων είναι πλήρη προτού να μπορέσουν να παίξουν.

Η διόρθωση Jitter αντιμετωπίζεται συνήθως από την τεχνολογία, συνήθως βασισμένη στο λογισμικό ή με τις αυξήσεις υλικού. Τις αποτυπώσεις λογισμικού στοιχείου συνήθως στη ρύθμιση του ψηφιακών περιεχομένου ή των εισαγωγών έως ώστε το στοιχείο είναι πλήρες και κατάλληλα συγκεντρωμένο - που είναι τι συμβαίνει πότε ένας παίκτης μέσως ρυθμίσεις αρχίζει τα εισερχόμενα μέσα. Στην περίπτωση ακουστικού CDs, η μονάδα αναπαραγωγής ήχου διαβάζει τα στοιχεία σε ένα επικαλύπτοντας σχέδιο και γλιστρά τα στοιχεία για να συγκεντρώσει γύρω το σωστό ρεύμα στοιχείων[3].

Οι αποτυπώσεις υλικού έχουν περισσότερων που κάνουν με να λειάνουν έξω τις δυσλειτουργίες στα σήματα λαμβανόμενα ή διαβιβασθέντα η διόρθωση λάθους μπορεί να περιλάβει τη συχνότητα, τη διαμόρφωση εύρους ή τις ρυθμίσεις κύκλων.

3.4 Συμφόρηση

Όπως αναφέραμε και παραπάνω απώλεια πακέτων στα ασύρματα δίκτυα μπορεί να έχουμε λόγω:

1. Λάθη στα bit (bit errors)
2. Αλλαγές στο σταθμό βάσης κατά την διάρκεια μιας επικοινωνίας (handoffs)
3. Συμφόρηση
4. Επαναδιάταξη
Πτυχιακή εργασία της Μακρή Σταματικής

Το TCP υποθέτει πως η απώλεια πακέτων οφείλεται σε
α) Συμφόρηση και
β) Επαναδιάταξη.
Το TCP ανιχνεύει την συμφόρηση στο δίκτυο υποθέτοντας πως τα timeout και τα διπλά αck υποδεικνύουν συμφόρηση ή επαναδιάταξη πακέτων.
Ένα timeout υποδηλώνει λοιπόν πως το πακέτο ή το αck και τα διπλά αck επαναδιάταξη πακέτων. Για να αντιμετωπίσει τη συμφόρηση στο δίκτυο κάνουμε timeout και επαναμεταδίδουμε δηλαδή αν ο αποστολέας δε δεχτεί αck για δεδομένα που έχει στείλει κάνει timeout και επαναμεταδίδει τα δεδομένα[1]. Επίσης, ένας τρόπος για να αντιμετωπίσουμε εντελώς την συμφόρηση είναι να χρησιμοποιήσουμε παράθυρο (cwnd) για έλεγχο ροής. Σ' αυτή την περίπτωση ο αποστολέας στέλνει μέχρι cwnd. Το cwnd τίθεται στο μισό της τιμής του όταν υποθέτει απώλεια λόγω συμφόρησης. Το cwnd αυξάνεται αθροιστικά και πρέπει πολύ προσεκτικά να προσεγγιστεί το όριο του δικτύου.

3.4.1 Έλεγχος Συμφόρησης (Congestion Control)

Αρχικά να πούμε, ότι ο έλεγχος συμφόρησης είναι ένας μηχανισμός που υλοποιείται στο πρωτόκολλο μεταφοράς μαζί με το μηχανισμό για αξιόπιστη μεταφορά δεδομένων. Ο έλεγχος συμφόρησης αφορά τον έλεγχο της κίνησης σε ένα δίκτυο, προσπαθώντας να αποφύγει την ενεργή συμμετοχή οποιασδήποτε διεργασίας ή της δυνατότητας του καλωδίου των ενδιάμεσων κόμβων και δικτύων, ακολουθώντας κάποια βήματα περιορισμού των πόρων μειώνοντας το ρυθμό αποστολής πακέτων[5]. Στη συνέχεια, θα δούμε πολύ σύντομα τον έλεγχο συμφόρησης στα
Προβλήματα Πολυμεσικών Εφαρμογών

ενσύρματα και ασύρματα δίκτυα. Θα δούμε το τι προκαλεί τη συμφόρηση αλλά και τις επιπτώσεις που έχει η συμφόρηση στα δίκτυα αυτά.

3.4.1.1 Έλεγχος Συμφόρησης στα Ενσύρματα και Ασύρματα Δίκτυα

Στα ενσύρματα και ασύρματα δίκτυα, η συμφόρηση συμβαίνει όταν η κίνηση στο δίκτυο ξεπερνά τη χωρητικότητα σε οποιοδήποτε σημείο στο δίκτυο. Ο έλεγχος της συμφόρησης στα ενσύρματα δίκτυα, συνήθως γίνεται χρησιμοποιώντας μηχανισμούς από άκρο σε άκρο (end-to-end) όπως στο TCP, οι οποίοι είναι απλοί και εύρωστοι και επιπέδου δικτύου. Παρόλα αυτά, η μέθοδος αυτή δεν επιλύει το πρόβλημα στα ασύρματα δίκτυα γιατί οι ταυτόχρονες μεταδόσεις μεταδίδονται στις διάφορες κανάλια αλληλεπιδρούν και επηρεάζουν το ένα το άλλο, και αυτό επειδή η ποιότητα του καναλιού δείχνει μεγάλη μεταβλητήτητα όσο προχωρά ο χρόνος [1].

Ο μηχανισμός από άκρο σε άκρο δεν μπορεί να χρησιμοποιηθεί στα Ασύρματα Δίκτυα Αισθητήρων γιατί δεν είναι αρκετά αποδοτικός στα δίκτυα αυτά. Οι λόγοι είναι οι εξής: τα μηνύματα ελέγχου που χρησιμοποιούνται για τον εντοπισμό των χαμένων πακέτων στο μηχανισμό από άκρο σε άκρο σιφανούν ένα επιπλέον μονοπάτι που αποτελείται από πολλά hops και αυτό δεν είναι αποδοτικό από πλευράς ενέργειας. Επίσης, τα μηνύματα ελέγχου που «ταξιδεύουν» διαμέσου πολλών hops έχουν πολύ μεγάλη πιθανότητα να χαθούν είτε λόγω λαθών στο σύνδεσμο είτε λόγω συμφόρησης. Και τέλος, ο μηχανισμός από άκρο σε άκρο για την ανακάλυψη κάποιου χαμένου πακέτου απαιτεί από τις κοινές επαναστροφές που χρειάζονται περισσότερη ενέργεια όσο προχωρά με τις hop-by-hop επαναστροφές.

Το άλλο είδος μηχανισμού που μπορεί να χρησιμοποιηθεί είναι το hop-by-hop όπως στα δίκτυα ATM (Asynchronous Transfer Mode) και Frame Relay[2]. Παρόλο που στο μηχανισμό αυτό όλοι οι ενδιάμεσοι κόμβοι συμμετέχουν στη διαδικασία, γίνεται γρήγορη μείωση της συμφόρησης.
Πτυχιακή εργασία της Μακρή Σταματικής

μειώνοντας το μέγεθος του ενταμιευτικού χώρου και προκαλώντας το πέταγμα πολλών πακέτων. Η όλη διαδικασία γίνεται χρησιμοποιώντας λιγότερα πακέτα στο δίκτυο, ώστε γίνεται διαφύλαξη της ενέργειας. Ως ελέγχος της συμφόρησης εφαρμόζεται με μια μέθοδο open-loop και οι αποφάσεις βασίζονται μόνο σε τοπικές πληροφορίες.

3.5 Δρομολόγηση

Στα δίκτυα υπολογιστών ο όρος δρομολόγηση (routing) αναφέρεται στη διαδικασία με την οποία επιλέγεται η διαδρομή μέσα σε ένα δίκτυο πάνω από την οποία θα σταλούν δεδομένα.

Η δρομολόγηση κατευθύνει, προωθεί, το πέρασμα των λογικά διευθυνσιοδοτημένων πακέτων από την πηγή τους προς τον απόλυτο προορισμό τους μέσω ενδιάμεσων κόμβων (που λέγονται δρομολογητές). Η διαδικασία της δρομολόγησης κατευθύνει, προωθώντας τα δεδομένα, με βάση πίνακες δρομολόγησης που βρίσκονται στους δρομολογητές, οι οποίοι διατηρούν μια εγγραφή για την καλύτερη διαδρομή προς διάφορες κατευθύνσεις στο δίκτυο. Κατά συνέπεια, η κατασκευή των πινάκων δρομολόγησης είναι πολύ σημαντική για αποτελεσματική δρομολόγηση[5].

Η δρομολόγηση διαφέρει από τη γεφύρωση στην υπόθεση της ότι οι δομές διευθύνσεων υπονοούν την εγγύτητα των παρόμοιων διευθύνσεων μέσα στο δίκτυο, επιτρέποντας κατά συνέπεια σε έναν πίνακα δρομολόγησης εισόδου να αντιπροσωπεύει τη διαδρομή προς μια ομάδα διευθύνσεων. Για αυτό και η δρομολόγηση ξεπερνά τη γεφύρωση στην γεφύρωση σε μεγάλα δίκτυα, και έχει γίνει κυρίαρχος τρόπος εύρεσης διαδρομής (path-discovery) στο Διαδίκτυο.
Σε μικρά δίκτυα οι πίνακες δρομολόγησης μπορούν να συμπληρωθούν και με το χέρι. Σε μεγάλα δίκτυα που εμπλέκονται και πολύπλοκες τοπολογίες και μπορεί να αλλάζουν διαρκώς, κάνει την με το χέρι κατασκευή των πινάκων δρομολόγησης προβληματική. Εντούτοις, τα περισσότερα δημόσια τηλεφωνικά δίκτυα μεταγωγής (PSTN) χρησιμοποιούν προ- υπολογισμένους πίνακες δρομολόγησης, με εφεδρικές διαδρομές αν η πιο σύντομη μπλοκαριστεί. Η δυναμική δρομολόγηση προσπαθεί να λύσει αυτό το πρόβλημα κατασκευάζοντας τους πίνακες δρομολόγησης αυτόματα, βασιζόμενη στις πληροφορίες που μεταφέρονται από τα πρωτόκολλα δρομολόγησης, και αφήνει το δίκτυο να ενεργεί σχεδόν αυτόνομα στο να αποφεύγει βλάβες και μπλοκαρίσματα.

Η δυναμική δρομολόγηση κυριαρχεί στο Διαδίκτυο. Εντούτοις όμως, η ρύθμιση των πρωτοκόλλων δρομολόγησης απαιτεί ικανότητες· δεν θα πρέπει κάποιος να υποθέτει ότι η τεχνολογία των δικτύων έχει εξελιχθεί μέχρι το σημείο της πλήρους αυτοματοποίησης της δρομολόγησης[5].

Τα δίκτυα μεταγωγής πακέτων (packet-switched networks) όπως το Διαδίκτυο, χωρίζουν τα δεδομένα σε πακέτα, που το καθένα περιέχει πληροφορίες για τον προορισμό του και δρομολογούνται εξωτερικά. Τα δίκτυα μεταγωγής κυκλώματος όπως τα τηλεφωνικά δίκτυα, εκτελούν και αυτά δρομολόγηση, με σκοπό να βρουν διαδρομές για κυκλώματα (όπως τηλεφωνικές κλήσεις) πάνω από τις οποίες μπορούν να στείλουν μεγάλες ποσότητες δεδομένων χωρίς να επαναλαμβάνουν συνεχώς την διεύθυνση του προορισμού. Το υλικό που χρησιμοποιείται στην δρομολόγηση περιλαμβάνει συγκεντρωτές, μεταγωγείς, και δρομολογητές.
ΚΕΦΑΛΑΙΟ 4: ΠΡΩΤΟΚΟΛΛΑ ΜΕΤΑΦΟΡΑΣ ΠΡΑΓΜΑΤΙΚΟΥ ΧΡΟΝΟΥ

Οι τεχνολογίες που παρέχουν τα ίδια τα δίκτυα είναι απαραίτητες για την υποστήριξη επικοινωνιών πολυμέσων, αλλά μόνες τους δεν είναι αρκετές. Οι εφαρμογές χρησιμοποιούν το δίκτυο μέσω ενός πρωτόκολλου μεταφοράς. Δεν έχει νόημα το να έχει το δίκτυο τη δυνατότητα να υποστηρίζει επικοινωνίες πολυμέσων και το πρωτόκολλο μεταφοράς να μην παρέχει τις κατάλληλες λειτουργίες και απόδοση στις εφαρμογές[5]. Αυτό το κεφάλαιο συζητά θέματα σχεδιασμού πρωτοκόλλων μεταφοράς πολυμέσων και αξιολογεί έναν αριθμό από προτεινόμενα πρωτόκολλα μεταφοράς πολυμέσων. Αφού τα πρωτόκολλα μεταφοράς βασίζονται σε πρωτόκολλα χαμηλότερου επιπέδου επιτέλους για να εκτελέσουν συγκεκριμένες λειτουργίες, περιγράφονται επίσης και πρωτόκολλα επιπέδου δικτύου. Σε ένα σύστημα μεταφοράς πολυμέσων, το πρωτόκολλο επιτέλους δικτύου είναι ιδιαίτερα σημαντικό, καθώς εκτελεί δέσμευση πόρων, δρομολόγηση και άλλες λειτουργίες. Όταν λέμε ένα σύστημα μεταφοράς, στοίβα πρωτόκολλο μεταφοράς, ή σύστημα επικοινωνιών, αναφέρομαστε στο σύνολο του πρωτόκολλου μεταφοράς, τα πρωτόκολλα χαμηλότερου επιπέδου, και στην δικτυακή υποδομή.

4.1 Έλεγχος ρυθμού μετάδοσης

Ο παραδοσιακός μηχανισμός ελέγχου ρυθμού μετάδοσης είναι ο έλεγχος ροής ολισθαίνοντος παραθύρου, ο οποίος επιτρέπει να μεταδοθεί ένας σταθερός αριθμός από bytes (ένα παράθυρο από bytes). Μετά από τη μετάδοση αυτού του σταθερού αριθμού από bytes, ο πομπός μπορεί να
μεταδώσει περισσότερα δεδομένα μόνο όταν του το επιτρέψει ο αποστολέας στέλνοντας μία βεβαίωση λήψης. Το μέγεθος παραθύρου που χρησιμοποιεί το TCP είναι 64 Kbytes[1]. Για ένα αργό δίκτυο, αυτό το μέγεθος παραθύρου θεωρείται πολύ μεγάλο. Για παράδειγμα, αν η ταχύτητα μετάδοσης είναι 64 kbps, χρειάζονται 8 δευτερόλεπτα για να μεταδοθούν 64 Kbytes δεδομένων. O συνηθισμένος round trip χρόνος του δικτύου είναι αρκετά μικρότερος των 8 δευτερόλεπτών, οπότε πριν ο πομπός τελειώσει να μεταδίδει τα δεδομένα του τρέχοντος παραθύρου, λαμβάνει μια βεβαίωση λήψης για το σημάδι για να η ενδιάμεση μνήμη (buffer) του παραλήπτη δεν είναι γεμάτη έτσι ώστε ο αποστολέας να μπορεί να μεταδίδει δεδομένα συνεχώς.

Για μετάδοση υψηλής ταχύτητας ο έλεγχος ροής ολισθαίνοντος παραθύρου δεν είναι κατάλληλος και αυτό γιατί:

- Το μέγεθος παραθύρου είναι υπερβολικά μικρό και ο πομπός την περισσότερη ώρα θα περιμένει για την άδεια μετάδοσης από τον παραλήπτη. Έτσι, το εύρος ζώνης της μετάδοσης δε χρησιμοποιείται πλήρως. Για παράδειγμα, ένας πομπός θα στείλει 64 Kbytes μέσα σε 50 ms με μια ταχύτητα των 10 Mbps. Για ένα WAN, ο round trip χρόνος είναι συνήθως πολύ μεγαλύτερος από 50 ms. Μια μερική λύση για το πρόβλημα αυτό είναι η χρησιμοποίηση ενός μεγαλύτερου μεγέθους παραθύρου.

- Ο έλεγχος ροής ολισθαίνοντος παραθύρου από μόνος του δεν είναι κατάλληλος για δεδομένα πολυμέσων. Ο έλεγχος ροής ολισθαίνοντος παραθύρου υποθέτει ότι ο ρυθμός μετάδοσης bits μπορεί να προσαρμόζεται ανάλογα με την κατάσταση του δικτύου και του παραλήπτη. Αυτό δεν είναι δυνατό για συνεχή μέσο, τα οποία πρέπει να στέλνονται με τον εσωτερικό τους ρυθμό δεδομένων. Για παράδειγμα, αν ένα σήμα ήχου δειγματοληπτείται με 8000 δείγματα ανά δευτερόλεπτο και 8 bits ανά δείγμα, 8000 τιμές δειγμάτων (ίσως με μια παραδεκτή μικρή διαφορά) πρέπει να μεταδίδονται και να λαμβάνονται κάθε
Πτυχιακή εργασία της Μακρή Σταματικής

dευτερόλεπτο για να έχει ο παραλήπτης σωστή αναπαραγωγή ήχου. Το δίκτυο είτε υποστηρίζει πλήρως αυτή την κυκλοφορία είτε δεν μεταδίδει καθόλου. Διακοπτόμενη μετάδοση και λήψη δεδομένων ήχου και βίντεο είναι άχρηστη για εφαρμογές πολυμέσων πραγματικού χρόνου[1].

4.2 Έλεγχος λαθών

Τα TCP παρέχει αξιόπιστη επικοινωνία δεδομένων. Όταν κάποιο πακέτο χάνεται ή αλλοιώνεται, τότε το πακέτο αυτό μεταδίδεται ξανά. Αυτή η στρατηγική δεν είναι κατάλληλη για επικοινωνίες πολυμέσων και αυτό γιατί:

- Στα δεδομένα πολυμέσων είναι ανεκτά κάποια λάθη ή απώλειες.
- Η επαναμετάδοση προκαλεί καθυστέρηση στα επόμενα δεδομένα, με αποτέλεσμα ο παραλήπτης να λαμβάνει περισσότερα άχρηστα δεδομένα (μετέπειτα δεδομένα είναι άχρηστα όσο και τα χαμένα δεδομένα όταν πρόκειται για συνεχή μέσα).
- Η υλοποίηση μηχανισμού επαναμετάδοσης απαιτεί κάποιον αριθμό χρονομέτρων (timers) και μεγάλες ενδιάμεσες μνήμες (buffers), καθιστώντας έτσι το πρωτόκολλο μεταφοράς πολύπλοκο και αργό[1].

Για επικοινωνίες πολυμέσων, πρέπει να παρέχεται ανίχνευση λαθών και να αποφασίζει η εφαρμογή αν χρειάζεται επαναμετάδοση ή όχι. Όταν απαιτείται επαναμετάδοση, μια επιλεκτική επαναμετάδοση είναι προτιμότερη από μια στρατηγική Ν-οπισθοδρόμησης. Στην επιλεκτική
η επαναμετάδοση, μόνο τα χαμένα πακέτα ή τα πακέτα με λάθη επαναμεταδίδονται. Σε μια τεχνική Ν-οπισθοδρόμησης, επαναμεταδίδονται όλα τα πακέτα από το τελευταίο λάθος ή απώλεια, παρόλο που τα περισσότερα πακέτα έχουν φτάσει σωστά στον προορισμό τους.

Μια άλλη λύση είναι να χρησιμοποιήσουμε κώδικα διόρθωσης σφαλμάτων, σύμφωνα με τον οποίο στέλνονται και άλλες πληροφορίες ώστε να καθίσταται δυνατή η διόρθωση σφαλμάτων στον παραλήπτη χωρίς να υπάρχει ανάγκη για επαναμετάδοση. Το μειονέκτημα της παραπάνω τεχνικής είναι ότι καταναλώνει πρόσθετο εύρος ζώνης[4].

4.3 Πρωτόκολλο Ελέγχου Μετάδοσης (Transmission Control Protocol - TCP)

Το TCP (Transmission Control Protocol) είναι ένα πρωτόκολλο προσανατολισμένης σύνδεσης (connection-oriented) του επιπέδου μεταφοράς, που είναι υπεύθυνο για την εξασφάλιση αξιόπιστης επικοινωνίας μεταξύ δυο ακρών υπολογιστών, διαμέσου ενός ή περισσοτέρων δικτύων.

Σε αυτό το επίπεδο επιτυγχάνεται η από άκρου σε άκρου επικοινωνία μεταξύ των χρηστών. Στα χαμηλότερα επίπεδα γίνεται εφικτή η επικοινωνία ενός συστήματος με τον πλησιέστερο δρομολογητή, ώστε διαδοχικές τέτοιες επικοινωνίες να εξασφαλίζουν την σύνδεση των δύο άκρων.

Το IP είναι ένα χωρίς σύνδεση (connectionless) πρωτόκολλο. Τις ελλείψεις του IP αναλαμβάνει να καλύψει το TCP που εξασφαλίζει την παράδοση των πακέτων με την σωστή σειρά, ελέγχει την ροή των δεδομένων, διασφαλίζει την αξιοπιστία της σύνδεσης καθώς επίσης εξειδικεύει και τερματίζει τις συνδέσεις μεταξύ δύο εφαρμογών μέσα στο δίκτυο. Πρωτόκολλα εφαρμογών όπως το FTP για την μεταφόρα των αρχείων και
Πτυχιακή εργασία της Μακρή Σταματικής

το SMTP για το ηλεκτρονικό ταχυδρομείο, στηρίζονται στις υπηρεσίες που προσφέρει το TCP[6].

Το TCP παραλαμβάνει δεδομένα από την εφαρμογή, τα τεμαχίζει σε τμήματα που δεν υπερβαίνουν τα 64 Kbyte και τα στέλνει στον ανταποκριτή του. Κατά την παραλαβή των πακέτων, ο αποδέκτης επιστρέφει μήνυμα που επιβεβαιώνει την παραλαβή τους. Σε περίπτωση που ο αποστολέας δεν λάβει επιβεβαιωτικό μήνυμα μέσα σε συγκεκριμένο χρονικό διάστημα από την αποστολή του πακέτου, συμπεραίνει ότι το πακέτο δεν παραλήφθηκε και το ξαναστέλνει. Τα πακέτα στέλνονται υπό την μορφή ροής, εγκαθιστώντας έτσι μια εικονική σύνδεση μεταξύ των δύο άκρων[5].

Το TCP έχει τις εξής λειτουργίες:

- Λογική σύνδεση και αποσύνδεση.
- Μετάδοση δεδομένων.
- Έλεγχο ροής.
- Πολύπλεξη εφαρμογών.
- Αξιοπιστία μετάδοσης.
- Υποστήριξη full duplex επικοινωνιών.
- Προτεραιότητα και ασφάλεια.

Προκειμένου να επικοινωνήσει το TCP με το ανώτερο επίπεδο εφαρμογών χρησιμοποιείται η έννοια της πόρτας (port). Πόρτα είναι ένας ακέραιος που βρίσκεται στο πεδίο της επικεφαλίδας του πακέτου TCP και της οποίας η τιμή αντιπροσωπεύει την εφαρμογή που χρησιμοποιεί την σύνδεση. Για τις πλέον συνηθισμένες εφαρμογές του Διαδικτύου προτείνονται οι εξής τιμές:

FTP = 21
TELNET = 23
SMTP = 25

Σελίδα 63 από 91
Πρωτόκολλα Μεταφοράς Πραγματικού Χρόνου

HTTP = 80

Ο συνδυασμός της διεύθυνσης IP με τον αριθμό της πόρτας του TCP ονομάζεται socket (υποδοχή) και χαρακτηρίζει με μοναδικό τρόπο την συγκεκριμένη εφαρμογή που τρέχει σε ένα σύστημα. Ένα ζευγάρι από socket χαρακτηρίζει μοναδικά την επικοινωνία μεταξύ των δύο εφαρμογών σε διαφορετικά συστήματα υπολογιστών[5].

4.3.1 Πρωτόκολλα Φιλικά Προς το TCP

Η ακαταλληλότητα των τυπικών εκδόσεων του TCP να ανταπεξέλθει στις απαιτήσεις των εφαρμογών πολυμέσων σκιαγραφεί την ανάγκη για μια νέα ομάδα πρωτόκολλων με βελτιωμένη απόδοση και αποτελεσματικότητα. Προτείνεται μία νέα οικογένεια πρωτόκολλων, τα οποία ονομάζονται Φιλικά προς το TCP. Αυτά είναι πρωτόκολλα συμβατά με το TCP τα οποία ικανοποιούν δύο βασικές επιδιώξεις: α) την ομαλή προσαρμογή του παραθύρου με την ελάττωση της αναλογίας μείωσης του παραθύρου κατά την διάρκεια της συμφόρησης και β) να ανταγωνίζονται δίκαια με τις ροές TCP μείωνοντας τον παράγοντα αύξησης του παραθύρου σύμφωνα με μία εξίσωση σταθερής κατάστασης εξόδου του TCP. Μια σημαντική παραδοχή, η οποία επηρέασε τις σχεδιαστικές αρχές των Φιλικών προς το TCP πρωτόκολλων, είναι ότι το TCP μπορεί να επιτύχει βελτίωσης προσανατολισμένες προς τις εφαρμογές. [13]Αυτό μπορεί να προσεγγιστεί χρησιμοποιούντας μία ήπια προς το πίσω ρύθμιση στην συμφόρηση η οποία έχει ως αποτέλεσμα να ευνοεί την ομαλότητα. Παρόλα αυτά, η τροποποίηση αυτή έχει αρνητικό αντίκτυπο στην ανταποκρισιμότητα του πρωτόκολλου. Αν λάβουμε υπόψη μας, ότι υπό αυτές τις συνθήκες το TCP γίνεται λιγότερο ευαίσθητο στην ανταπόκριση, τότε η ενσωμάτωση μιας στρατηγικής ανίχνευσης σφαλμάτων και κατηγοριοποίησης είναι τελικά απαραίτητη. Στην συνέχεια, παρουσιάζουμε
τρία αντιπροσωπευτικά πρωτόκολλα Φιλικά προς το TCP, τα οποία συστήνονται ιδιαίτερως για εφαρμογές ροής πολυμέσων.[16]

Το πρωτόκολλο Ελέγχου Ρυθμού Φιλικό προς το TCP, TCP-Friendly Rate Control-TFRC), το οποίο είναι πρωτόκολλο ελέγχου συμφόρησης με βάση το ρυθμό, το οποίο είναι φιλικό προς το TCP. Σύμφωνα με το TFRC, ο ρυθμός μετάδοσης ρυθμίζεται σε αναλογία με το επίπεδο συμφόρησης όπως αυτό φαίνεται από τον ρυθμό απώλειας. Εν αντιθέσει με το πρότυπο TCP, η στιγμιαία έξοδος του TFRC έχει πολύ χαμηλότερη απόκλιση με το χρόνο και συνεπώς δεν χρειάζονται παρά ρυθμίσεις ομαλότητας. Επιπροσθέτως, πολλαπλές απώλειες πακέτων στο ίδιο RTT θεωρούνται από το TFRC ως μοναδικό συμβάν απώλειας και για αυτό το λόγο, το πρωτόκολλο ακολουθεί μια πιο ήπια στρατηγική ελέγχου συμφόρησης. Τελικά, το TFRC επιτυγχάνει την εξομάλυνση των κενών μετάδοσης και έτσι, είναι κατάλληλο για εφαρμογές οι οποίες χρειάζονται ομαλό ρυθμό μετάδοσης, όπως τα μέσα ροής. Παρόλα αυτά, η ομαλότητα αυτή έχει αρνητικό αντίκτυπο, καθώς το πρωτόκολλο γίνεται λιγότερο ευαίσθητο στην διαθεσιμότητα εύρους ζώνης. Το TFRC έχει ακόμα ένα σημαντικό περιορισμό: σχεδιαστήκε για εφαρμογές που μεταδίδουν πακέτα τακτού μεγέθους και κατά συνέπεια ο μηχανισμός του για τον έλεγχο συμφόρησης είναι ακατάλληλος για εφαρμογές οι οποίες χρησιμοποιούν πακέτα μεταβλητού μεγέθους. Προκειμένου να ανταπεξέλθει σε αυτή την δυσκολία, έχει προταθεί ως εναλλακτική, μια παραλλαγή του TFRC με το όνομα TFRC-PS (TFRC-PacketSize).

Το TCP-Real είναι ένα πρωτόκολλο μεταφοράς υψηλής εξόδου, φιλικό προς το TCP, το οποίο ενσωματώνει μηχανισμού οπτικοής συμφόρησης προκειμένου να ελαχιστοποιήσει τα κενά ρυθμού μετάδοσης. Ως αποτέλεσμα, το πρωτόκολλο αυτό είναι κατάλληλο για εφαρμογές πραγματικού χρόνου, καθώς επιτρέπει καλύτερη απόδοση και εύλογα χρονόμετρα αναπαραγωγής. Το TCP-Real εφαρμόζει ένα μηχανισμό ελέγχου βασισμένο στην μέτρηση και προσανατολισμένο στον παραλήπτη, ο οποίος βελτιώνει σημαντικά την απόδοση του TCP σε ετερογενείς δικτύωσης και ασύμμετρες διαδρομές. Στο TCP-Real, ο
παραλήπτης αποφασίζει με μεγαλύτερη ακρίβεια για το κατάλληλο μέγεθος του παραθύρου συμφόρησης. Επίσης παρουσίες είναι και ρυθμίσεις Σταδιακής Εκκίνησης και λήξης σύνδεσης, χρησιμοποιούνται όμως μόνο όταν αποτυγχάνει η αποφυγή συμφόρησης. Παρόλα αυτά, οι ρυθμίσεις ρυθμού και λήξης σύνδεσης εγκαταλείπονται όταν ο ρυθμός λήξης υποδεικνύει επαρκή διαθεσιμότητα εύρους ζώνης. Το TCP-Real επιτυγχάνει βελτιωμένη απόδοση εν σχέση με τις πρότυπες εκδόσεις του TCP, στο σενάριο ροής πολυμέσων σε ετερογενές δίκτυα με κίνηση χρονικού περιορισμού, σφάλματα ασύρματης σύνδεσης και ασύμμετρες διαδρομές [14]

Το TCP Westwood είναι μια τροποποίηση αποκλειστικά της πλευράς του αποστολέα, του ελέγχου συμφόρησης του TCP Reno, η οποία εκμεταλλεύεται την εκτίμηση εύρους ζώνης απ’ άκρου εις άκρο ώστε να ορίσει κατάλληλα τις αξίες του ορίου σταδιακής εκκίνησης και το παράθυρο συμφόρησης μετά από ένα επεισόδιο συμφόρησης [22]. Το TCP Westwood βελτιώνει σημαντικά τον δίκαιο μερισμό της ικανότητας των δικτύων υψηλής ταχύτητας. Το πρωτόκολλο διενεργεί μια εκτίμηση απ’ άκρου εις άκρο του διαθέσιμου εύρους σε μια TCP σύνδεση ώστε να προσαρμόσει ανάλογα τα παράθυρα ελέγχου μετά την συμφόρηση. Αν και το TCP Westwood δεν ενσωματώνει κανένα μηχανισμό που να υποστηρίζει ταξινόμηση σφαλμάτων και τις αντίστοιχες στρατηγικές ανάκτησης για ενσύρματα/ασύρματα δίκτυα, εν τούτω, ο προτεινόμενος μηχανισμός φαίνεται να είναι αποτελεσματικός σε ασύμμετρες συνδέσεις λόγω του καίριου μηχανισμού ελέγχου.

4.4 Πρωτόκολλο Διαγράμματος Δεδομένων του Χρήστη (User Datagram Protocol - UDP)

Το UDP είναι πρωτόκολλο του επιπέδου μεταφοράς όπως το TCP με την διαφορά ότι είναι ένα χωρίς σύνδεση πρωτόκολλο (connectionless). Είναι
εξαιρετικά απλό στην υλοποίησή του, άλλα σε αντίθεση με το TCP, δεν προσφέρει μηχανισμούς επανεκπομπής, αξιοπιστίας και ελέγχου ροής. Μερικές από τις εφαρμογές που στηρίζονται στο UDP είναι η NFS (Network File System) για διαχείριση αρχείων δικτύου και η TFTP (Trivial File Transfer Protocol) για την μεταφορά αρχείων. Οι ίδιες οι εφαρμογές πρέπει να φροντίζουν για τις λειτουργίες που δεν είναι σε θέση να προσφέρει το UDP.

4.5 RTP/RTCP/RTSP

Η μορφή και ο τρόπος λειτουργίας των αλληλεπιδραστικών και γενικά των εφαρμογών πραγματικού χρόνου, χαρακτηριστικότερο παράδειγμα των οποίων είναι οι επικοινωνίες με χρήσιμη πολυμέσων, παρουσιάζει αυξημένες απαιτήσεις και αυστηρότερες προδιαγραφές σε σχέση με κοινές εφαρμογές. Έτσι οι εφαρμογές αυτές απαιτούν προκαθορισμένο QoS (Quality of Service) προκειμένου να επιτύχουν συγχρονισμένη μεταφορά δεδομένων ή απλά επειδή απαιτούν υψηλότερη προτεραιότητα από την συνηθισμένη κατά την κυκλοφορία των δεδομένων τους. Το TCP πρωτόκολλο, όπως ήδη αναφέραμε, αποτελεί έναν από τους κύριους μηχανισμούς μεταφοράς δεδομένων πάνω στο IP δίκτυα (ο δεύτερος είναι ο UDP), και αναπτύχθηκε για να εξασφαλίσει αξιόπιστη μεταφορά, με την σωστή σειρά, από τον αποστολέα προς τον παραλήπτη. Ωστόσο οι μηχανισμοί ελέγχου λαθών και ελέγχου ροής που περιλαμβάνονται σ’ αυτό δεν είναι σε θέση να αποτρέψουν ακαθόριστες καθυστερήσεις και άτακτη παράδοση δεδομένων. Γίνεται λοιπόν φανερό ότι το TCP αδυνατεί να ικανοποιήσει τις απαιτήσεις των εφαρμογών πραγματικού χρόνου. Επιπλέον αρκετά από την πολυπλοκότητα του TCP δεν χρειάζεται στις εφαρμογές αυτές. Για παράδειγμα μια εφαρμογή ήχου σε πραγματικό χρόνο μπορεί απλά να αγνοήσει χαμένα δεδομένα αντί να
καθυστερεί περιμένοντας την αναμετάδοσή τους όπως επιβάλει το TCP πρωτόκολλο.

Για τους λόγους αυτούς αναπτύχθηκαν νέα πρωτόκολλα όπως τα RTP και RTCP που εξασφαλίζουν μεταφορά δεδομένων σύμφωνα με τις αυστηρές προδιαγραφές πραγματικού χρόνου.

Σχήμα 4. Διάταξη Πρωτοκόλλων

4.5.1 Πρωτόκολλο Μεταφοράς Πραγματικού Χρόνου (Real Time Transport Protocol -RTP)

Το RTP αναπτύχθηκε για να βοηθήσει την μεταφορά δεδομένων πολυμέσων παρέχοντας απαρίθμηση ακολουθίας και χρονοσφράγισμα μαζί με μια επεκτάσιμη αρχιτεκτονική για την αναγνώριση του ωφέλιμου φορτίου των πακέτων. Ένα δεύτερο πρωτόκολλο, το RTCP, στο οποίο θα αναφερθούμε παρακάτω, ορίζεται ως μέρος των χαρακτηριστικών του
Πτυχιακή εργασία της Μακρή Σταματικής

RTP - σκοπός του είναι να παρέχει έλεγχο και παρακολούθηση της μεταφοράς των δεδομένων του RTP.

Η χρήση του όρου Real-Time στο όνομα του πρωτοκόλλου δεν σημαίνει ότι οι χρήστες λαμβάνουν τα ρεύματα δεδομένων την στιγμή που στέλνονται. Η καθυστέρηση του δικτύου το αποτρέπει. Στην περίπτωση αυτή ο όρος Real-Time αντιπροσωπεύει μια ιδιότητα των μεταδόσεων που βασίζονται σε ρεύματα (όπως για παράδειγμα ότι το αρχικό πακετάρισμα και ο αρχικός χρονισμός των μεγάλων τμημάτων δεδομένων μπορούν να αναπαραχθούν μετά την μετάδοση, από ορισμένους ή όλους τους παραλήπτες). Ετσι, τουλάχιστον θεωρητικά, ο χρήστης δεν θα μπορεί να διακρίνει ανάμεσα σε ένα ρεύμα δεδομένων που πηγάζει από το μηχάνημα του ή που μεταδίδεται από το δίκτυο.

Το RTP παρέχει υπηρεσίες μεταφοράς από-άκρη-σε-άκρη, αλλά δεν παρέχει όλη την λειτουργικότητα που παρέχεται από ένα τυπικό πρωτόκολλο μεταφοράς. Για παράδειγμα, το RTP συνήθως λειτουργεί στην κορυφή του UDP για να χρησιμοποιεί τις υπηρεσίες πολυπλεξίματος και αθροίσματος ελέγχου του πρωτοκόλλου αυτού. Μπορεί όμως να λειτουργεί και πάνω στο IPX ή στο ATM. Το RTP δεν γνωρίζει την έννοια της σύνδεσης και γι' αυτό μπορεί να λειτουργεί είτε πάνω σε προσανατολισμένα κατά σύνδεση είτε πάνω σε χωρίς σύνδεση πρωτόκολλα χαμηλού επιπέδου.

Επίσης το RTP δεν παρέχει μηχανισμούς για την εξασφάλιση έγκαιρης παράδοσης ούτε για την παροχή εγγυήσεων ποιότητας υπηρεσιών. Δεν εγγυάται την παράδοση ούτε αποτρέπει την παράδοση με λανθασμένη ισχύ ενώ επίσης δεν υποθέτεται ότι το υποκείμενο δίκτυο είναι αξιόπιστο. Μερικές εφαρμογές που μπορούν να προσαρμοζόταν σε αλλαγές στην παράδοση των δεδομένων, δεν απαιτούν τέτοιες εγγυήσεις, αλλά γι' αυτές που τις απαιτούν, το RTP πρέπει να συνοδεύεται από άλλους μηχανισμούς, όπως για παράδειγμα το RSVP, προκειμένου να υποστηρίζει την δέσμευση πόρων και να παρέχει αξιόπιστες υπηρεσίες.

Αν και το RTP μπορεί να χρησιμοποιηθεί για μονής εκπομπής επικοινωνία, ο πρωταρχικός σχεδιαστικός στόχος ήταν η πολλαπλή
επικοινωνία. Δεν συμβαίνει μόνο, τα δεδομένα να στέλνονται από τον
αποστολέα σε πολλούς παραλήπτες, αλλά και οι παραλήπτες στέλνουν τις
αναφορές τους πίσω προς όλα τα μέλη της ομάδας μέσα στην οποία
gίνεται η επικοινωνία. Αυτό επιτρέπει σε όλους τους συμμετέχοντες να
γνωρίζουν το bandwidth που απαιτείται και τον φόρτο που προσθέτουν
στον αποστολέα.
Εκτός από τους συνηθισμένους ρόλους του αποστολέα και του
παραλήπτη, το RTP ορίζει δύο νέους ρόλους, του μεταφραστή και του
μίκτη. Οι μεταφραστές και οι μίκτες βρίσκονται στο δίκτυο ανάμεσα στους
αποστολείς και τους παραλήπτες και επεξεργάζονται RTP πακέτα που
περνούν στην αυτούς. Οι μεταφραστές απλώς μεταφράζουν μια μορφή
ωφέλιμου φορτίου σε μια άλλη. Για παράδειγμα, αυτό μπορεί να απαιτείται
όταν ένα αρχείο κινούμενης εικόνας (video) πρέπει να κωδικοποιηθεί με
ένα διαφορετικό τρόπο προκειμένου να συμβιβαστεί με τυχόν
περιορισμένο διαθέσιμο εύρος ζώνης bandwidth σε κάποιο μέρος του
dικτύου. Οι μίκτες είναι παρόμοιοι με τους μεταφραστές αλλά, αντί να
μεταφράζουν εξεχωριστά ρεύματα σε διαφορετικές μορφές, συνδυάζουν
πολλαπλά ρεύματα σε ένα απλό ρεύμα διατηρώντας την αρχική τους
μορφή. Δεν μπορούν όλες οι εφαρμογές να υποστηρίζουν μίκτες. Για
παράδειγμα η προσέγγιση αυτή λειτουργεί καλά για συνδιασκέψεις που
περιλαμβάνουν μόνο ήχο, αλλά πολλαπλές πηγές κινούμενης εικόνας δεν
μπορούν να συνδυαστούν σε ένα ρεύμα.
Μορφή πακέτων του RTP

Το RTP χρησιμοποιεί την ίδια μορφή για όλα τα μηνύματά του.
Επειδή υποστηρίζει πακετάρισμα σε επίπεδο εφαρμογών, αυτή η μορφή
μηνυμάτων προσφέρεται για διάφορες ερμηνείες και για προσθήκες που
συγκεκριμένες εφαρμογές μπορεί να χρειάζονται.

Σελίδα 70 από 91
Η RTP επικεφαλίδα παρέχει τις πληροφορίες που χρειάζονται για το συγχρονισμό και την προβολή δεδομένων ήχου και video, καθώς και για τον καθορισμό του αν κάποια πακέτα έχουν χαθεί ή έφτασαν με λανθασμένη σειρά. Η επικεφαλίδα επίσης περιλαμβάνει τον τύπο φορτίου του πακέτου, επιτρέποντας έτσι πολλαπλά δεδομένα και τύπους συμπίεσης[5].

Τα πακέτα RTP αποτελούνται από μια 12-byte επικεφαλίδα ακολουθούμενη από το ωφέλιμο φορτίο τους (για παράδειγμα ένα frame κινούμενης εικόνας ή μια ακολουθία από ηχητικά δείγματα). Το φορτίο αυτό μπορεί επίσης να επίσης να κωδικοποιηθεί σε ένα επίπεδο κωδικοποίησης. Η επικεφαλίδα περιέχει τις παρακάτω πληροφορίες:

Τύπος Ωφέλιμου Φορτίου. Ένας 1-byte τύπος φορτίου που καθορίζει τον τύπο του φορτίου που περιέχεται στο πακέτο (JPEG video ή GSM ήχος, για παράδειγμα)

Χρονοσφραγίδα. Μια 32-bit χρονοσφραγίδα που περιγράφει την στιγμή δημιουργίας των δεδομένων που περιέχονται στο πακέτο. Η συχνότητα της χρονοσφραγίδας εξαρτάται από τον τύπο του φορτίου.

Αριθμός ακολουθίας. Ένας 16-bit αριθμός του πακέτου στην ακολουθία, που επιτρέπει ανίχνευση απωλειών και αρίθμηση μέσα σε μια σειρά από πακέτα με την ίδια χρονοσφραγίδα.

Bit δείκτης. Η ερμηνεία αυτού του bit εξαρτάται στον τύπο του φορτίου. Για παράδειγμα, για ένα φορτίο κινούμενης εικόνας, υποδεικνύει το τέλος του frame, ενώ για ένα φορτίο ήχου την αρχή της ομιλίας.

Αναγνωριστικό πηγής συγχρονισμού. Ένας 32-bit αριθμός που δημιουργείται τυχαία και που μοναδικά καθορίζει την πηγή μέσα σε μια περιοχή[4].

Ένα σχήμα (format) ωφέλιμου φορτίου καθορίζει τον τρόπο με τον οποίο ένα συγκεκριμένο ωφέλιμο φορτίο, όπως μια κωδικοποίηση ήχου ή εικόνας, πρέπει να μεταφερθεί στα πλαίσια του RTP. Μία κατατομή
Πρωτόκολλα Μεταφοράς Πραγματικού Χρόνου

(profile) εκχωρεί αριθμούς τύπου ωφέλιμου φορτίου για το σύνολο των σχημάτων ωφέλιμου φορτίου που μπορούν να χρησιμοποιηθούν σε μια εφαρμογή. Μία κατατομή μπορεί επίσης να καθορίζει συγκεκριμένες για την εφαρμογή προεκτάσεις ή τροποποιήσεις του RTP. Μία αρχική κατατομή για τη μεταφορά δεδομένων ήχου και εικόνας ορίστηκε στο RFC 1890.

Αλλοι τύποι ωφέλιμου φορτίου έχουν προταθεί για H.263 ροές video, πλεονάζοντα δεδομένα ήχου, MPEG, MPEG1/MPEG2 video σε δέσμες, QuickTime ροές μέσων, και DTMF ψηφία.

Βασική λειτουργία του RTP

Για την εγκαθίδρυση μιας RTP συνόδου, η εφαρμογή που χρησιμοποιεί το RTP καθορίζει ένα ζευγάρι διευθύνσεων προορισμού (δηλαδή μια διεύθυνση δικτύου και δύο θύρες (ports), μια για το RTP και μια για το RTCP. Η διεύθυνση μπορεί να είναι είτε μια unicast διεύθυνση δικτύου είτε μια multicast διεύθυνση. Σε μια σύνοδο πολυμέσων, το κάθε μέσο μεταφέρεται σε μια ξεχωριστή RTP σύνοδο, και τα δικά του RTCP πακέτα αναφέρουν την ποιότητα λήψης για κάθε σύνοδο (παρακάτω γίνεται μια περιγραφή του RTCP). Με άλλα λόγια, ο ήχος και η εικόνα θα ταξίδευαν σε διαφορετικές RTP συνόδους.

Αν τα RTP πακέτα μεταφέρονται σε UDP datagrams, τα πακέτα δεδομένων και ελέγχου χρησιμοποιούν δύο συνεχόμενες θύρες, και η θύρα δεδομένων είναι πάντα η κατώτερη και έχει τον αριθμό ένα(1). Αν άλλα πρωτόκολλα υπηρετούν κάτω από το RTP είναι δυνατόν να μεταφέρεται τόσο το τμήμα δεδομένων όσο και το τμήμα ελέγχου σε μία μόνο μονάδα δεδομένων πρωτοκόλλου χαμηλότερου επιπέδου, με τον έλεγχο να ακολουθεί από τα δεδομένα.

Η επικεφαλίδα (header) του RTP παρέχει την πληροφορία συγχρονισμού που είναι απαραίτητη για να συγχρονίζονται και να
Πτυχιακή εργασία της Μακρή Σταματικής

εκθέτονται δεδομένα ήχου και εικόνας, καθώς και για να προσδιορίζεται το αν τα πακέτα έχουν χαθεί ή έχουν φτάσει εκτός σειράς. Επιπροσθέτως, η επικεφαλίδα καθορίζει τον τύπο ωφέλιμου φορτίου, επιτρέποντας έτσι πολλαπλούς τύπους δεδομένων και συμπίεσης. Το RTP έρχεται στα μέτρα μιας συγκεκριμένης εφαρμογής μέσω βοηθητικών προδιαγραφών δομής και σχήματος ωφέλιμου φορτίου.

Για να επιτρέπεται ένα υψηλότερο επίπεδο συγχρονισμού ή για να συγχρονίζονται μη περιοδικά μεταδιδόμενες ροές δεδομένων, το RTP χρησιμοποιεί ένα μονοτονικό ρολόι. Το ρολόι αυτό συνήθως αυξάνεται σε χρονικές μονάδες που ένας μικρότερος από το μικρότερο μέγεθος μπλοκ της ροής δεδομένων. Η αρχική τιμή του ρολογίου είναι τυχαία. Μια εφαρμογή δεν χρησιμοποιεί την RTP χρονοσφραγίδα απευθείας: αντίθετα εξάγει την NTP (Network Time Protocol, Πρωτόκολλο Χρόνου Δικτύου) χρονοσφραγίδα και RTP χρονοσφραγίδα από τα μεταδιδόμενα RTCP πακέτα για κάθε ροή που θέλει να συγχρονίσει.

Ας χρησιμοποιήσουμε το σενάριο σύσκεψης ήχου (audio-conferencing), το οποίο αρχικά παρουσιάστηκε στο RFC 1889, για να επεξηγήσουμε τη χρήση του RTP. Υποθέτετε ότι το κάθε άτομο που λαμβάνει μέρος στη σύσκεψη στέλνει δεδομένα ήχου σε τμήματα (segments) διάρκειας 20 msec. Μια RTP επικεφαλίδα προηγείται κάθε τμήματος δεδομένων ήχου, και το RTP μήνυμα που προκύπτει τοποθετείται σε ένα UDP πακέτο. Η RTP επικεφαλίδα υποδεικνύει τον τύπο κωδικοποίησης ήχου που χρησιμοποιείται, για παράδειγμα PCM (Pulse Code Modulation, Διαμόρφωση Κώδικα Παλμού). Οι χρήστες μπορούν να επιλέξουν να αλλάξουν την κωδικοποίηση κατά τη διάρκεια μιας σύσκεψης σαν αντίδραση σε περίπτωση συμφόρησης δικτύου ή, για παράδειγμα, να διευκολύνουν τις απαιτήσεις χαμηλού εύρους ζώνης ενός νέου ατόμου το οποίο τώρα εισέρχεται στη σύσκεψη. Πληροφορία συγχρονισμού και ένας αριθμός ακολούθιας στην RTP επικεφαλίδα χρησιμοποιούνται από τους παραλάβοντες για την ανακατασκευή του συγχρονισμού που παράγεται από την πηγή, έτσι ώστε σε αυτό το
παράδειγμα, τμήματα ήχου να παίζονται συνεχόμενα μέχρι το τέλος στον παραλήπτη κάθε 20 msec.

4.5.2 Πρωτόκολλο ελέγχου πραγματικού χρόνου (Real-Time Control Protocol, RTCP)

Το δίδυμο πρωτόκολλο του RTP, το RTCP, χρησιμοποιείται για τον έλεγχο RTP μεταφορών δεδομένων. Ένα RTCP μήνυμα αποτελείται από έναν αριθμό πακέτων τα οποία μπορούν να τοποθετούνται το ένα μέσα στο άλλο, το καθένα με το δικό του κώδικα τύπου και ένδειξη μήκους. Η μορφή τους μοιάζει πολύ με αυτή των RTP πακέτων δεδομένων.

Σε μια multicast σύνοδο, τα RTCP πακέτα στέλνονται περιοδικά στην ίδια ομάδα υπολογιστών στην οποία στέλνονται τα RTP πακέτα δεδομένων. Με τον τρόπο αυτό, χρησιμεύουν επίσης και ως ένδεικτη ζωτάνων συνδέσεων και μελών συνόδου, ακόμα και αν δεν λαμβάνουν χώρα πραγματικές μεταδόσεις[5].

Το RTCP εκτελεί τις παρακάτω τέσσερις λειτουργίες:

4.5.2.1 Παροχή πληροφοριών στις εφαρμογές

Η κύρια λειτουργία είναι η παροχή πληροφοριών σε μια εφαρμογή σχετικά με την ποιότητα της διανομής δεδομένων. Το κάθε RTCP πακέτο περιέχει αναφορές πομπού και παραλήπτη οι οποίες περιέχουν στατιστικές που είναι χρήσιμες για την εφαρμογή. Αυτές οι στατιστικές περιλαμβάνουν τον αριθμό των πακέτων που έχουν σταλεί, τον αριθμό των πακέτων που έχουν χαθεί, τη διαταραχή μεταξύ των αφιέρων κτλ.
4.5.2.2 Αναγνώριση της RTP πηγής

Το RTCP μεταφέρει έναν αναγνωριστή επιπέδου μεταφοράς για μια RTP πηγή, που καλείται το κανονικό όνομα (canonical name, CNAME). Αυτό το CNAME χρησιμοποιείται για να παρακολουθούνται τα άτομα που συμμετέχουν σε μια RTP σύνοδο. Οι παραλήπτες χρησιμοποιούν το CNAME για να συνδέουν πολλαπλές ροές δεδομένων από ένα συγκεκριμένο άτομο που συμμετέχει στη σύνοδο σε ένα σύνολο συνδεδεμένων RTP συνόδων (π.χ. για το συγχρονισμό ήχου και εικόνας).

4.5.2.3 Παύση μεταξύ μεταδόσεων RTCP ελέγχου

Για να αποτραπεί η κατανάλωση όλων των πόρων του δικτύου από τον έλεγχο κυκλοφορίας και για να επιταχυνθεί στο RTP να εξυπηρετεί έναν μεγάλο αριθμό ατόμων που συμμετέχουν σε μια σύνοδο, ο έλεγχος κυκλοφορίας περιορίζεται στο πέντε τοις εκατό (5%) το πολύ της συνολικής κυκλοφορίας συνόδου. Αυτό το όριο επιβάλλεται ρυθμίζοντας το ρυθμό με τον οποίο τα RTCP πακέτα μεταδίδονται σαν μια συνάρτηση των ατόμων που συμμετέχουν. Αφού ο κάθε συμμετέχων στέλνει πακέτα ελέγχου σε όλους τους άλλους, ο καθένας μπορεί να παρακολουθεί τον συνολικό αριθμό των συμμετεχόντων και να χρησιμοποιεί τον αριθμό αυτό για να υπολογίζει το ρυθμό με τον οποίο πρέπει να στέλνει RTCP πακέτα.

4.5.2.4. Μεταβίβαση ελάχιστης πληροφορίας ελέγχου συνόδου

Σαν μια προαιρετική λειτουργία, το RTCP μπορεί να χρησιμοποιηθεί και για τη μεταβίβαση μιας μικρής ποσότητας πληροφοριών σε όλους τους συμμετέχοντες στη σύνοδο. Για παράδειγμα, το RTCP θα μπορούσε να μεταφέρει ένα προσωπικό όνομα...
για την αναγνώριση ενός συμμετέχοντα στην οθόνη ενός χρήστη. Αυτή η λειτουργία είναι χρήσιμη για χαλαρά ελεγχόμενες συνόδους στις οποίες οι συμμετέχοντες εισέρχονται και εξέρχονται ανεπίσημα[2].

Σαν ένα αποτέλεσμα αυτής της λειτουργικότητας, το RTCP μπορεί να χρησιμοποιηθεί για την υποστήριξη τουλάχιστον τεσσάρων λειτουργιών σχετιζόμενων με συνόδους: παρακολούθηση ποιότητας υπηρεσιών και έλεγχος συμφόρησης, συγχρονισμός μεταξύ μέσων, αναγνώριση πηγής, και εκτίμηση μεγέθους συνόδου.

Στο RTCP, οι εφαρμογές που έχουν πρόσφατα στείλει δεδομένα ήχου και εικόνας παράγουν μία αναφορά η οποία στέλνεται σε όλα τα μέλη της συνόδου. Αφού η αναφορά περιέχει μετρητές συσσώρευσης πληροφοριών των πακέτων και των bytes που έχουν σταλεί, οι παραλήπτες μπορούν να εκτιμήσουν τον πραγματικό ρυθμό δεδομένων.

Τα μέλη της συνόδου παράγουν αναφορές παραλήπτη για όλες τις πηγές εικόνας και ήχου από τις οποίες έχουν λάβει μήνυμα πρόσφατα. Οι αναφορές περιέχουν πληροφορίες σχετικά με τον υψηλότερο αριθμό ακολουθίας που έχει ληφθεί, τον αριθμό των πακέτων που έχουν χαθεί, ένα μέτρο της διαταραχής μεταξύ των αφίξεων, και χρονοσφραγίδες οι οποίες χρειάζονται για να υπολογιστεί μια εκτίμηση της καθυστέρησης ταξιδιού μετ’ επιστροφής.

Οπως έχει σημειωθεί και προηγουμένως, το RTP και το RTCP δημιουργούν διαφορετικές συνόδους για διαφορετικές ροές μέσων. Η RTCP αναφορά αποστολέα περιέχει μια ένδειξη του πραγματικού χρόνου και μια αντίστοιχη RTP χρονοσφραγίδα η οποία μπορεί να χρησιμοποιηθεί για να συγχρονιστούν πολλαπλές ροές μέσων στον παραλήπτη.

Τα RTP πακέτα δεδομένων αναγνωρίζουν την καταγωγή τους μόνο μέσω ενός 32-bit αναγνώριστη που έχει παραχθεί τυχαία, ενώ τα RTCP μηνύματα περιέχουν ένα πακέτο περιγραφής πηγής (source description, SDES) το οποίο με τη σειρά του περιέχει έναν αριθμό τμημάτων
πληροφορίας, συνήθως κειμένου. Ένα τέτοιο τμήμα πληροφορίας είναι το
αποκαλούμενο κανονικό όνομα, ένας σφαιρικά μοναδικός αναγνωριστής
tου συμμετέχοντος στη σύνοδο. Άλλα πιθανά SDES αντικείμενα
περιλαμβάνουν το όνομα του χρήστη, τη διεύθυνση ηλεκτρονικού
tαχυδρομείου, τον αριθμό τηλεφώνου, και πληροφορίες εφαρμογών[1].

Μια που για το RTCP έχει επιτίθεσες καθοριστεί ένα τέτοιο μέγεθος
tο οποίο αποτελεί το πέντε τοις εκατό του ονομαστικού ρυθμού
dεδομένων μιας συνόδου, η παρακολούθηση της κυκλοφορίας ελέγχου
μπορεί να υπηρετήσει σαν ένας ενδείκτης του αριθμού των μελών που
συμμετέχουν στη σύνοδο. Υπενθυμίζουμε ότι η κάθε σύνοδος περιοδικά
μεταδίδει RTCP πακέτα.

Το RTCP παρέχει πληροφορίες ανάδρασης σχετικά με τις
τρέχουσες συνθήκες του δικτύου και την ποιότητα λήψης, επιτρέποντας
στις εφαρμογές να προσαρμόζονται αυτόματα στις παραπάνω συνθήκες.
Για παράδειγμα, μια επιβράδυνση (slowdown) η οποία παρατηρείται από
πολλούς παραλήπτες οφείλεται κατά πάσα πιθανότητα σε ένα πρόβλημα
dικτύου και όχι σε έναν συγκεκριμένο υπολογιστή. Στην περίπτωση αυτή,
η εφαρμογή πηγής θα μπορούσε να διαλέξει να αλλάξει χωρίς
καθυστέρηση το σχήμα κωδικοποίησής της, να απαλείψει προσωρινά το
τμήμα εικόνας μιας μετάδοσης (να μη στέλνει για λίγο εικόνα), ή να αλλάξει
από χρώμα σε μονοχρωμία ώστε να βελτιώθει η μεταφορά των
πληροφοριών.

Σε άλλες περιπτώσεις, οι διαχειριστές δικτύων μπορούν να
χρησιμοποιήσουν πληροφορίες των RTCP πακέτων για να εκτιμήσουν την
απόδοση των δικτύων τους όταν πρόκειται για multicast διανομή. Αφού το
RTCP στέλνει πληροφορίες ανάδρασης όχι μόνο στον αποστολέα, αλλά
επίσης και σε όλους τους άλλους παραλήπτες μιας multicast ροής,
επιτρέπει σε έναν χρήστη να καταλάβει αν κάποιο πρόβλημα οφείλεται
στον τοπικό τερματικό κόμβο ή στο δίκτυο γενικά.

Η βάση για τον έλεγχο ροής και συμφόρησης παρέχεται από τις
RTCP αναφορές αποστολέα και παραλήπτη. Αναλύοντας το πεδίο
διαταραχής μεταξύ των αφίξεων, το οποίο περιέχεται στην αναφορά του
αποστολέα, μπορούμε να μετρήσουμε τη διαταραχή ενός συγκεκριμένου χρονικού διαστήματος και να υποδείξουμε την πιθανότητα συμφόρησης προτού αυτή εμφανιστεί και προκαλέσει απώλεια πακέτων.

Δομές πακέτων

Το RTCP ορίζει πέντε διαφορετικούς τύπους μηνυμάτων: αναφορά αποστολέα (Sender Report SR), αναφορά δέκτη (Receiver Report RR), περιγραφή πηγής (Source Description SDES), μηνύματα αποχαιρετισμού και εφαρμογών (Bye and App messages).

Αναφορά αποστολέα: χρησιμοποιείται για στατιστικά μεταφοράς και λήψης από μέρη που είναι ενεργοί αποστολείς.

Αναφορά δέκτη: διαχειρίζεται στατιστικά λήψης από μέρη που δεν είναι ενεργοί αποστολείς.

Μήνυμα περιγραφής πηγής: χρησιμοποιείται για να μεταφέρει περισσότερες πληροφορίες για τα πακέτα, περιλαμβάνοντας τόσο στοιχεία όσο και πληροφορία συγχρονισμού και αναγνωριστές πηγής.

Μήνυμα αποχαιρετισμού: δείχνει το τέλος της συμμετοχής στο κομμάτι ενός από τα μέρη ενώ το μήνυμα εφαρμογών χρησιμοποιείται για εφαρμογή συγκεκριμένων λειτουργιών.

Κάθε RTCP πακέτο ξεκινά με ένα πάγιο μέρος όμοιο με τα RTP πακέτα δεδομένων, ακολουθούμενο από δομημένα στοιχεία που μπορεί να είναι μήκος μεταβλητής συμφώνως προς τον τύπο του πακέτου. Τα πεδία μήκους μεταβλητής πάντα τελειώνουν σε ένα 32-bit όριο[1].

Σελίδα 78 από 91
4.5.3 Πρωτόκολλο Ροής Πραγματικού Χρόνου (Real-Time Streaming Protocol -RTSP)

Ένας από τους σημαντικούς τύπους δεδομένων ο οποίος είναι επί του παρόντος κοινότυπος σε πολυμέσα βασισμένα στο Διαδίκτυο, είναι τα πολυμέσα ροής. Κατά την πολυμεσική ροή, τα πακέτα σπάνε σε πολλά πακέτα με μέγεθος κατάλληλο για το διαθέσιμο bandwidth μεταξύ του πελάτη (client) και του εξυπηρετητή (server). Όταν ο client έχει λάβει αρκετά πακέτα, ο χρήστης του λογισμικού μπορεί να παίξει ένα πακέτο, να αποσυμπιέσει ένα άλλο, και να λαμβάνει ένα τρίτο. Ο χρήστης μπορεί να ξεκινήσει να ακούει σχεδόν αμέσως χωρίς να πρέπει να κατεβάσει ολόκληρο το αρχείο. Πηγές δεδομένων για πολυμεσική ροή μπορούν να περιλάβουν τόσο ζωντανά data feeds όσο και αποθηκευμένα clips[5].

Το πρωτόκολλο ροής πραγματικού χρόνου, RTSP, είναι ένα πρωτόκολλο επιπέδου εφαρμογής που βοηθάει στην παροχή ενός σταθερού πρωτόκολλου για πολυμεσική ροή σε εφαρμογές πολλών σημείων είτε κάτω από συνθήκες unicast ή multicast. Το RTSP είναι η στιγμή αυτή ένα IETF προσχέδιο προδιαγραφών στα πρώιμα στάδια ανάπτυξής. Παρόλα αυτά διατίθενται ήδη προϊόντα που χρησιμοποιούν το RTSP. Κατά πολλούς τρόπους, το RTSP είναι περισσότερο πλαίσιο εργασίας παρά πρωτόκολλο. Προτίθεται να ελέγχει συνόδους πολλαπλής παράδοσης δεδομένων και να παρέχει ένα μέσο επιλογής καναλιών παράδοσης όπως UDP, TCP, IP multicast και μηχανισμούς παράδοσης βασισμένους στο RTP. Το RTSP μπορεί να χρησιμοποιηθεί μαζί με το RSVP για να εγκαταστήσει και να διαχειριστεί συνόδους πολυμεσικής ροής δεσμευμένου εύρους ζώνης.

Το RTSP δρα σαν απομακρυσμένος έλεγχος δικτύου για multimedia servers. Εγκαθιστά και ελέγχει είτε ένα απλό ρεύμα είτε πολλαπλά συγχρονιζόμενα ρεύματα συνεχόμενων μέσων όπως ήχο και
ικόνα, αλλά δεν παραδίδει συνήθως τα συνεχόμενα ρεύματα, αυτή τη δουλειά την αφήνει σε πρωτόκολλα όπως το RTP.

Το σύνολο των ρευμάτων προς έλεγχο καθορίζεται από μια περιγραφική παρουσίαση. Ο πελάτης μπορεί να αιτηθεί μια παρουσίαση περιγραφής μέσω HTTP ή κάποιας άλλης μεθόδου. Αν η παρουσίαση πολυεκτέμπεται, η παρουσίαση περιγραφής περιέχει τις multicast διευθύνσεις και θύρες που πρόκειται να χρησιμοποιηθούν για τα συνεχόμενα μέσα. Κάθε μέσο ρεύματος μπορεί να διαμείνει σε διαφορετικό εξυπηρετητή. Ο πελάτης εγκαθιστά αυτόματα πολλές ταυτόχρονες συνόδους ελέγχου με τους διαφορετικούς εξυπηρετητές μέσων και ο συχνοτετμός των μέσων εκτελείται στο επίπεδο μεταφοράς.

Το RTSP έχει σχεδιαστεί πάνω από το RTP για να ελέγχει και να παραδίδει περιεχόμενο πραγματικού χρόνου. Αυτό εξουσιοδοτεί το RTSP να επωφεληθεί από τις όποιες μελλοντικές βελτιώσεις του RTP. Εφόσον το RTSP μπορεί να χρησιμοποιηθεί με unicast κυκλοφορία, η χρήση του μπορεί να ισχύσει την μετάβαση από περιβάλλοντα Unicast σε IP multicasting με RTP.

Το RTSP επικαλύπτεται εν μέρει από το HTTP (HyperText Transfer Protocol). Είναι παρόμοιο σε σύνταξη και λειτουργία με το HTTP1.1 ώστε οι προεκτάσεις του HTTP να μπορούν, ως επί τω πλείστον, να προστίθενται στο RTSP. Παράδειγμα, το RTSP μπορεί να χρησιμοποιεί PICS (Platform for Internet Content Selection) για να συσχετίζει επικέτες με τα περιεχόμενα. Μια ουσιώδης διαφορά μεταξύ RTSP και HTTP είναι ότι το RTSP διατηρεί καταστάσεις εξ' ορισμού σε όλες τις περιπτώσεις (To HTTP είναι πρωτόκολλο χωρίς καταστάσεις). Επίσης, τόσο οι εξυπηρετητές (servers) όσο και οι πελάτες (clients) του RTSP μπορούν να εκθέσουν αιτήσεις.

Το RTSP μπορεί επίσης να αλληλεπιδράσει με το HTTP εφόσον η αρχική επαφή με το περιεχόμενο της πολυμεσικής ροής γίνεται συχνά μέσο μιας σελίδας του Παγκόσμιου Ιστού. Η τρέχουσα προδιαγραφή του πρωτόκολλου για το RTSP επιτρέπει ξεχωριστά αυτόματα σημεία μεταξύ ενός Web server και του media server που υλοποιεί το RTSP.
Βασική Λειτουργία του RTSP.

Το RTSP μπορεί να χρησιμοποιηθεί για να ανακαλέσει media από έναν media server, να προσκαλέσει έναν media server σε μια συνδιάσκεψη (σε ένα κατανεμημένο περιβάλλον εκπαίδευσης για παράδειγμα) ή να προσθέσει media σε μια υπάρχουσα παρουσίαση.

Μια τυποποιημένη αλληλουχία γεγονότων θα βοηθούσε τον client να αποκτήσει μια περιγραφή παρουσίασης συνόδου από έναν Web server χρησιμοποιώντας HTTP, τότε ο έλεγχος περνάει στο media επίπεδο του client και στο multimedia server ο οποίος επικοινωνεί μέσω RTSP. Το πραγματικό multimedia stream μεταδίδεται μέσω RTP. Η εγκατάσταση και ο τερματισμός της συνόδου ελέγχεται από το RTSP.

Κάθε παρουσίαση και media stream πρέπει ίσως να προσδιορίζεται από ένα RTSP URL (Uniform Resource Locator), όπως το παράδειγμα που ακολουθεί (δείχνει δύο διαφορετικά streams από δύο διαφορετικούς servers):

![Σχήμα 5. Λειτουργία του RTSP](image-url)
Μια παρουσίαση μπορεί να περιέχει περισσότερα από ένα media stream. Το αρχείο περιγραφής παρουσίασης περιέχει κωδικοποιήσεις, γλώσσα και άλλες παραμέτρους που επιτρέπουν στον client να διαλέξει τον κατάλληλοτερο συνδυασμό από media. Κάθε media stream το οποίο ελέγχεται ατομικά από RTSP προσδιορίζεται από ένα RTSP URL, το οποίο δείχνει στον media server που διαχειρίζεται αυτό το συγκεκριμένο media stream και ονοματίζει το stream που αποθηκεύεται σε αυτόν τον server. Από τις μεθόδους που χρησιμοποιεί το RTSP μόνο 5 – SET UP, PLAY, RECORD, PAUSE και TEARDOWN – παίζουν κεντρικό ρόλο στον καθορισμό δέσμευσης και χρήσης των stream πόρων στον server [11].

Δεν υφίσταται θέμα για RTSP σύνδεση. Αντί αυτού ένας server διατηρεί μια σύνδεση η οποία περιγράφεται από έναν προσδιοριστή. Κατά τη διάρκεια μιας RTSP συνόδου, ένας RTSP client μπορεί να ανοίξει και να κλείσει πολλές αξιόπιστες συνδέσεις μεταφοράς προς τον server για να εκθέσει RTSP αιτήσεις. Εφόσον η RTSP παράδοση ενός stream μπορεί να αποσταλεί μέσω ενός ξεχωριστού πρωτοκόλλου ανεξάρτητου από το κανάλι ελέγχου, η παράδοση δεδομένων συνεχίζεται έστω και εάν δεν παραλαμβάνουν RTSP αιτήσεις από τον media server. Συνεπώς, ο server χρειάζεται να κρατάει μια κατάσταση συνόδου για να μπορεί να συσχετίζει RTSP αιτήσεις με μια ροή.
4.6 Απαιτήσεις των πρωτοκόλλων μεταφοράς πολυμέσων.

Δυο είναι οι κύριες απαιτήσεις των πρωτοκόλλων μεταφοράς. Το throughput του πρωτοκόλλου πρέπει να είναι υψηλό και ότι η διασύνδεση πρέπει να παρέχει μια QOS προδιαγραφή την οποία εγγυώνται τα πρωτόκολλα χαμηλού επιπέδου. Ας τα δούμε όμως αναλυτικότερα.
4.6.1 Υψηλό throughput

Τα δεδομένα πολυμέσων, και ειδικά το video, απαιτούν συνεχές εύρος ζώνης υψηλής μετάδοσης. Για παράδειγμα, ένα συμπιεσμένο video υψηλής ποιότητας απαιτεί ένα εύρος ζώνης των 5 Mbps περίπου. Ένα μη συμπιεσμένο video απαιτεί ένα εύρος ζώνης 50 με 100 φορές μεγαλύτερο από το παραπάνω. Όλα τα δεδομένα περνούν μέσα από τη στοίβα μεταφοράς, οπότε το πρωτόκολλο μεταφοράς θα πρέπει να είναι αρκετά γρήγορο ώστε να υποστηρίζει τις απαιτήσεις της εφαρμογής σε εύρος ζώνης. Εφόσον μια εφαρμογή μπορεί να χρειαζόταν έναν αριθμό από συνεχείς ροές δεδομένων, η ταχύτητα του πρωτόκολλου μεταφοράς πρέπει να είναι μεγαλύτερη από τις απαιτήσεις των παραπάνω ροών σε συναθροιστικό (aggregate) εύρος ζώνης.

Ένας άλλος τρόπος να δούμε την απαιτήσεις ενός πρωτόκολλου μεταφοράς σε throughput είναι από τη σκοπιά του συνολικού συστήματος επικοινωνιών. Το throughput ενός πρωτόκολλου μεταφοράς πρέπει να είναι υψηλότερο από την ταχύτητα προσπέλασης του δικτύου. Διαφορετικά, το εύρος ζώνης που παρέχεται από τη σημεία προσπέλασης του δικτύου δε μπορεί να χρησιμοποιηθεί πλήρως, και το πρωτόκολλο μεταφοράς γίνεται το σημείο συμφόρησης του συνολικού συστήματος επικοινωνιών.

Πρωτόκολλα που είναι βελτιστοποιημένα για υψηλή ταχύτητα αλλά δεν υποστηρίζουν QoS εγγυήσεις και/ή multicast, καλούνται lightweight πρωτόκολλα ή υψηλής ταχύτητας πρωτόκολλα μεταφοράς.
4.6.2 QOS προδιαγραφή και εγγύηση

Ροές δεδομένων πολυμέσων απαιτούν συνολικές QOS εγγυήσεις σχετικά με το εύρος ζώνης, την καθυστέρηση, και την διαταραχή καθυστέρησης. Για να ικανοποιήσει αυτές τις απαιτήσεις, ένα σύστημα μεταφοράς πρέπει να παρέχει ένα μηχανισμό στις εφαρμογές ώστε να μπορούν να καθορίζουν και να διαπραγματεύονται QOS απαιτήσεις.

Μια εφαρμογή μπορεί να καθορίζει τον απαιτούμενο χαρακτηρισμό κυκλοφορίας (χρησιμοποιώντας πολλαπλές παραμέτρους ή καθορίζοντας έναν διαμορφωτικό κυκλοφορίας με κάποιες παραμέτρους). Σε αυτή την περίπτωση αυτές οι παράμετροι μπορούν να περαστούν στο επίπεδο δικτύου. Εναλλακτικά, μια εφαρμογή μπορεί να καθορίζει την κυκλοφορία χρησιμοποιώντας έναν αναγνωριστή περιγραφής κυκλοφορίας, όπως "εικόνα ποιότητας τηλεόρασης" και "ήχος ποιότητας ραδιόφωνου". Στην περίπτωση αυτή, ο πρωτόκολλο μεταφοράς πρέπει να μετασχηματίσει τον αναγνωριστή περιγραφής σε ένα σύνολο από QOS παραμέτρους. Γενικά δεν υπάρχει ομοφωνία σχετικά με το ποιο μέθοδος προτιμάται: ένα πρωτόκολλο μεταφοράς μπορεί να χρειάζεται να παρέχει και τις δύο μεθόδους. Όταν απαιτείται μια τυπική κυκλοφορία, χρησιμοποιείται η δεύτερη μέθοδος: αλλιώς η πρώτη. Σε κάθε περίπτωση, ακόμα δεν γνωρίζουμε το καλύτερο σύνολο παραμέτρων και τις τιμές τους ώστε να περιγράψουμε γενική, κατά ριπές κυκλοφορία.

Οι QOS απαιτήσεις που δίνονται στο πρωτόκολλο μεταφοράς περνάνε στο πρωτόκολλο επιπέδου δικτύου. Το πρωτόκολλο επιπέδου δικτύου, το οποίο καλείται πρωτόκολλο δέσμευσης, διαδίδει αυτές τις απαιτήσεις και δεσμεύει τους απαραίτητους πόρους πάνω από μια σύνδεση δικτύου. Αυτή η σύνδεση συχνά είναι μια multicast σύνδεση σε εφαρμογές πολυμέσων.

Η παροχή QOS εγγυήσεων απαιτεί τη συνεργασία όλων των υποσυστημάτων ενός συστήματος μεταφοράς, περιλαμβάνοντας εκτέλεση.
Πρωτόκολλα Μεταφοράς Πραγματικού Χρόνου

tης στοίβας μεταφοράς, διαχείριση πόρων, έλεγχο της πρόσβασης στο δίκτυο, και διαχείριση ουρών σε διακόπτες (switches) δικτύου. Για να παρέχεται συνολική εγγύηση απόδοσης, θα πρέπετε επίσης να είναι εγγυημένη η απόδοση της εκτέλεσης στοίβας μεταφοράς. Μέρος της στοίβας μεταφοράς (περιλαμβανομένου του πρωτοκόλλου μεταφοράς, του πρωτοκόλλου δικτύου, και άλλων πρωτοκόλλων χαμηλότερου επιπέδου) είναι υλοποιημένη σε λογισμικό στους υπολογιστές του δικτύου. Η εκτέλεση του λογισμικού αυτού ελέγχεται από το λειτουργικό σύστημα του υπολογιστή. Για να είναι εγγυημένη η απόδοση της εκτέλεσης της στοίβας μεταφοράς, απαιτείται ένα λειτουργικό σύστημα που μπορεί να παρέχει QOS εγγυήσεις στις εφαρμογές πολυμέσων. Το λειτουργικό σύστημα θα πρέπει επίσης να μπορεί να υποστηρίζει υπάρχουσες εφαρμογές.

5. Συμπεράσματα

Η ανάπτυξη του Διαδικτύου μαζί με την αυξημένη διαθεσιμότητα εύρους ζώνης συνέβαλαν δραστικά στην ευρεία εξάπλωση μεγάλων ποσοτήτων περιεχομένου πολυμέσων στο Διαδίκτυο. Παρουσιάσαμε λοιπόν πως τα δεδομένα πολυμέσων είναι συνήθως μεγάλου μεγέθους και απαιτούν πολύ και πολλές φορές ασύμφορο χρόνο μεταφοράς. Ακόμη ένα σημαντικό κομμάτι είναι η Ποιότητα Υπηρεσιών για μια εφαρμογή πολυμέσων και πως την αντιλαμβάνεται ο τελικός χρήστης. Είναι προφανές ότι προκύπτουν απαιτήσεις Ποιότητας Υπηρεσιών ως προς τον χρήστη και οι προτεραιότητες της εφαρμογής συγκλίνουν προς την ικανοποίηση αυτού. Η μετάβαση στην ποιότητα Υπηρεσιών γίνεται χρησιμοποιώντας δικτυο-κεντρικές παραμέτρους ποιότητας, οι οποίες είναι το εύρος ζώνης , η καθυστέρηση, η απόκλιση καθυστέρησης, η απώλεια πακέτων και η συμφόρηση. Η Ποιότητα Υπηρεσιών γίνεται όλο
Πτυχιακή εργασία της Μακρή Σταματικής

και σημαντικότερη για τα πληροφοριακά συστήματα πολυμέσων και αυτό γιατί οι εφαρμογές ροής πολυμέσων απαιτούν μια πιο πολύπλοκη διαχείριση. Ποιότητας Υπηρεσιών που προσδιορίζεται από τις προτιμήσεις και την αντίληψη του κάθε χρήστη.

Όπως αναφέραμε και προηγουμένως η λειτουργία του Διαδικτύου στηρίζεται στη συστατική πρωτοκόλλου του Διαδικτύου. Αν και αυτό βασίζεται σε υπηρεσία αναξιόπιστου διαγράμματος δεδομένων πετυχαίνει εν τούτωι να προσφέρει αξιόπιστη υπηρεσία διανομής δεδομένων στις εφαρμογές Διαδικτύου. Ένα χαρακτηριστικό του Διαδικτύου είναι η ετερογένειά του. Το πρωτόκολλο ελέγχου μετάδοσης (TCP) είναι το επικρατέστερο για την μετάδοση δεδομένων στο Διαδίκτυο, αλλά παρόλα αυτά το TCP σχεδιάστηκε για να ενσωματώσει καλά σε ετερογενή περιβάλλοντα και για τον λόγο αυτό η εφαρμοσιμότητα του TCP είναι περιορισμένη για εφαρμογές πολυμέσων σε ετερογενή Διαδίκτυα.

Αυτή η ακαταλληλότητα του TCP να ανταπεξέλθει στις απαιτήσεις των εφαρμογών πολυμέσων δημιούργησε μια νέα ομάδα αποτελεσμάτων φιλικά προς το TCP τα οποία κανονιστική δύο βασικές επιδιώξεις, την ομαλή προσαρμογή του παραθύρου κατά την διάρκεια της συμφόρησης και να ανταγωνίζονται δίκαια τις ροές του TCP μειώνοντας τον παράγοντα αύξησης του παραθύρου.

Μια υλοποίηση ροής μπορεί να εκτελείται όπως αναφέραμε, σε TCP αλλά μπορεί να εκτελείται και σε UDP. Ομως το UDP δεν ενσωματώνει κανένα αποτελεσματικό μηχανισμό ελέγχου συμφόρησης και συνεπώς παρέχει αδιάκοπο ρυθμό μετάδοσης δεδομένων με αποτέλεσμα επεισόδια συμφόρησης να συμβαίνουν συχνά και έτσι οι υπηρεσίες των οποίων παρέχονταν από το UDP είναι ανεπαρκείς.

Ένα επεισόδιο συμφόρησης λοιπόν μπορεί να έχει αρνητικό αντίκτυπο στην απόδοση μιας εφαρμογής πολυμέσων ανεξάρτητα από την αποτελεσματικότητα των μηχανισμών ελέγχου συμφόρησης του TCP. Γι’ αυτό αν και είναι πολύ δύσκολο να προβλεφθεί πότε θα λάβει χώρα συμφόρηση στο δίκτυο έχει προταθεί η αντιμετώπισή της από την αλληλεγγύη. Να παρακολουθείται συνεχώς η κίνηση του δικτύου έτσι ζήτομα να γίνει
μια προσπάθεια να αποφευχθεί η συμφόρηση χρησιμοποιώντας ακόμα και μηχανισμούς αποφυγής συμφόρησης.
Η απώλεια πακέτων είναι συνήθως αποτέλεσμα εκτεταμένης συμφόρησης του δικτύου. Γενικά η απώλεια ενός πακέτου υποδεικνύει συμφόρηση και το TCP ξεκινά αμέσως έλεγχο προκειμένου να αποφευχθεί κατάρρευση λόγω συμφόρησης. Η απώλεια πακέτων έχει άμεσο αντίκτυπο στην απόδοση ενός βίντεο και συνεπώς γίνεται αντιληπτή από τον χρήστη και είναι ενοχλητικό γι’ αυτόν.
Ένα ακόμη συνηθισμένο φαινόμενο στην μετάδοση πολυμεσικών εφαρμογών είναι η απόκλιση καθυστέρησης. Όπως γνωρίζουμε οι πληροφορίες στέλνονται σε πακέτα και σε περίπτωση που δεν υπάρχει ακρίβεια στον χρόνο αποστολής των πακέτων παρουσιάζεται η απόκλιση καθυστέρησης. Φυσικά μπορεί να αντιμετωπιστεί με την προσωρινή αποθήκευση των πακέτων σε μια ενδιάμεση μνήμη (buffer) και κατόπιν να διαβάζονται με ονομαστικό ρυθμό.
Τέλος η απόδοση μιας πολυμεσικής εφαρμογής επηρεάζεται και από την καθυστέρηση, όπου η μη έγκαιρη διανομή δεδομένων έχει και αυτή αρνητικές επιπτώσεις στην ποιότητα ενός βίντεο με απογοητευτικές συνέπειες για τον χρήστη.
Η μετάδοση βίντεο λοιπόν προσφέρει την ευκαιρία για πολύ προχωρημένες μορφές επικοινωνιών, συνεργασίας και διασκέδασης, θέτει όμως νέες, όπως αναφέραμε, και υπολογισμικές υψηλότερες απαιτήσεις στην Ποιότητα Υπηρεσιών που προσφέρονται. Οπότε πρέπει τόσο ένας εξυπηρετητής (server) όσο και ένας χρήστης (client) μιας εφαρμογής πολυμέσων να λαμβάνουν υπόψη κάθε πιθανό παράγοντα και αποτελεσματική λύση, για να παρέχεται καλύτερη απόδοση πολυμεσικών εφαρμογών ώστε να εξασφαλίζεται έτσι η ποιότητα των εφαρμογών αυτών.

Σελίδα 88 από 91
ΒΙΒΛΙΟΓΡΑΦΙΑ:

1. Francois Fluckiger , “Understanding Networking Multimedia Application and Technology”.

